Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Of tantalum compounds

Hazards of Tantalum Compounds. The toxicity of tantalum compounds depends on then solubihty. Tantalum pentoxide is poorly absorbed and nontoxic perorahy. The pentachloride, on the other hand, shows an LD q of 985 mg/Kg adrninistered peroraHy. [Pg.333]

Double Fluorides of Tantalum Pentafluoride.—When solutions of tantalum pentoxide in hydrofluoric acid are treated with solutions of the fluorides of the alkali (and other) metals, double fluorides are obtained which possess the general formula R F.TaF5, where n usually varies between 1 and 3 in the most important series n=2. These double fluorides are much more stable than tantalum pentafluoride. They were among the first tantalum compounds to recdve examination,5 and still form an important class of tantalum compounds. A study of their isomorphism with the corresponding compounds of niobium... [Pg.188]

The probable existence of protactinium was predicted as early as 1871 by Mendeleev to fill up the space on his peiiodic table between thorium (at, no. 90) and uranium (at. no, 92). He termed the unconfirmed element ekatantalum. In 1926, O. Hahn predicted the properties of the element in considerable detail, including descriptions of its compounds. In 1930, Aristid v. Grosse isolated 2 milligrams of what then was termed ekatantalum pentoxide and showed that element 91 differed m all reactions with comparable amounts of tantalum compounds with exception of precipitation by NH3. However, credit for the discovery of protactinium generally is attributed to Lise Meitner and Otto Hahn in 1917,... [Pg.1370]

Introduction.—The compilation of the inorganic chemistry of niobium and tantalum has been revised.341 Reviews have appeared on the physicochemical properties of tantalum compounds and alloys,498,499 on the extraction, properties, and uses of niobium and tantalum,500 and on the structures of their compounds determined by diffraction methods.339 The half-life of 182Ta has been determined as 114.74 + 0.08 days.501... [Pg.70]

On the contrary, the high temperature flexural strength of TaB composites was strongly reduced compared to the room temperature value, which dropped from 630 to 220 MPa at 1200°C and to 115 MPa at 1500°C, owing to softening of significant amount of silica. The bad performances of tantalum-compounds at high temperature could also be related to the nasty nature of tantalum-oxide, which unavoidably forms and starts to volatilize above 1500°C. [Pg.168]

Niobium, discovered by Hatchett ia 1801, was first named columbium. In 1844, Rosed thought he had found a new element associated with tantalum (see Tantalum AND tantalum compounds). He called the new element niobium, for Niobe, daughter of Tantalus of Greek mythology. In 1949, the Union of Pure and Apphed Chemistry setded on the name niobium, but in the United States this metal is stiU known also as columbium. Sometimes called a rare metal, niobium is actually more abundant in the earth s cmst than lead. [Pg.20]

Tantalum Compounds. Potassium heptafluorotantalate [16924-00-8] K TaF, is the most important tantalum compound produced at plant scale. This compound is used in large quantities for tantalum metal production. The fluorotantalate is prepared by adding potassium salts such as KCl and KF to the hot aqueous tantalum solution produced by the solvent extraction process. The mixture is then allowed to cool under strictiy controlled conditions to get a crystalline mass having a reproducible particle size distribution. To prevent the formation of oxyfluorides, it is necessary to start with reaction mixtures having an excess of about 5% HF on a wt/wt basis. The acid is added directiy to the reaction mixture or together with the aqueous solution of the potassium compound. Potassium heptafluorotantalate is produced either in a batch process where the quantity of output is about 300—500 kg K TaFy, or by a continuously operated process (28). [Pg.327]

Tantalum. Numerous methods developed to extract tantalum metal from compounds included the reduction of the oxide with carbon or calcium the reduction of the pentachloride with magnesium, sodium, or hydrogen and the thermal dissociation of the pentachloride (30). The only processes that ever achieved commercial significance are the electrochemical reduction of tantalum pentoxide in molten K TaF /KF/KCl mixtures and the reduction of K TaF with sodium. [Pg.327]

The corrosion behavior of tantalum is weU-documented (46). Technically, the excellent corrosion resistance of the metal reflects the chemical properties of the thermal oxide always present on the surface of the metal. This very adherent oxide layer makes tantalum one of the most corrosion-resistant metals to many chemicals at temperatures below 150°C. Tantalum is not attacked by most mineral acids, including aqua regia, perchloric acid, nitric acid, and concentrated sulfuric acid below 175°C. Tantalum is inert to most organic compounds organic acids, alcohols, ketones, esters, and phenols do not attack tantalum. [Pg.331]

Niobium and tantalum provide no counterpart to the cationic chemistry of vanadium in the -t-3 and -t-2 oxidation states. Instead, they form a series of cluster compounds based... [Pg.980]

Plants producing and handling halogens and halogen compounds Tantalum finds extensive use in the production and handling of hydrochloric and hydrobromic acid, chlorine and bromine and many of their derivatives. Absorbers, coolers and heaters which show considerable advantages in terms of heat-flux capabilities and corrosion resistance have been used on hydrochloric acid duties for over 40 years and condensers have been used in bromine plants for at least the same period. Typical applications of tantalum in the bromine and chlorine industries are listed in Table 5.27 . [Pg.903]

Taylor, D.E., Tantalum and Tantalum Compounds, in Encyclopaedia of Chemical Technology, 19, 2nd ed., John Wiley Sons, 630-652 (1969)... [Pg.905]

The discoveiy of the process for the separation of tantalum and niobium using fluorination marked, in fact, the beginning of the development of the chemistry and technology of tantalum and niobium in general, and initiated the development of complex fluoride compound chemistry in particular. [Pg.5]

The second method of tantalum and niobium production is related historically to Marignac s process of tantalum and niobium separation, in the form of complex fluoride compounds, and is based on the fluorination of raw material. The modem production process consists of slightly different steps, as described below. [Pg.6]

Since niobates and tantalates belong to the octahedral ferroelectric family, fluorine-oxygen substitution has a particular importance in managing ferroelectric properties. Thus, the variation in the Curie temperature of such compounds with the fluorine-oxygen substitution rate depends strongly on the crystalline network, the ferroelectric type and the mutual orientation of the spontaneous polarization vector, metal displacement direction and covalent bond orientation [47]. Hence, complex tantalum and niobium fluoride compounds seem to have potential also as new materials for modem electronic and optical applications. [Pg.9]

In summary, investigations in the area of the chemistry of tantalum and niobium fluoride compounds will advance tantalum-niobium metallurgy and promote the development of new materials for modem applications. [Pg.10]

The synthesis of tantalum and niobium fluoride compounds is, above all, related to the fluorination of metals or oxides. Table 3 presents a thermodynamic analysis of fluorination processes at ambient temperature as performed by Rakov [51, 52]. It is obvious that the fluorination of both metals and oxides of niobium and tantalum can take place even at low temperatures, whereas fluorination using ammonium fluoride and ammonium hydrofluoride can be performed only at higher temperatures. [Pg.11]

Precipitation of fluoride compounds from solutions of hydrofluoric acid, HF, is performed by the addition of certain soluble compounds to solutions containing niobium or tantalum. Initial solutions can be prepared by dissolving metals or oxides of tantalum or niobium in HF solution. Naturally, a higher concentration of HF leads to a higher dissolution rate, but it is recommended to use a commercial 40-48% HF acid. A 70% HF solution is also available, but it is usually heavily contaminated by H2SiF6 and other impurities, and the handling of such solutions is extremely dangerous. [Pg.12]

Synthesis of the compounds from such HF solutions is performed by adding soluble fluoride compounds to the tantalum or niobium solution or by recrystallization of prepared fluoride compounds from water or HF solutions of different concentrations. In the first case, the composition of the compounds obtained depends on the ratio between Ta/Nb and the added metal and on the initial concentration of the HF used, whereas in the second case, it depends only on the HF concentration. [Pg.13]

Systematic investigations of the compounds that can be precipitated by adding alkali metals fluorides to HF solutions containing tantalum or niobium are discussed in [60, 61]. Compositions of the precipitated compounds and of their corresponding mother solutions are given in Table 4. [Pg.16]

Another anhydrous solvent that is frequently used for the synthesis of tantalum and niobium fluoride compounds is bromine trifluoride, BrF3. At ambient temperature, bromine trifluoride is light yellow liquid characterized by a boiling point of 126°C, a melting point of 9°C and a density of 2.84 g/cm3 at melting temperature. [Pg.23]

The most universal method for the synthesis of tantalum and niobium fluoride compounds is based on direct interaction between their pentafluorides, TaF5 or NbFs, and fluorides of other metals. Some physical-chemical properties of these compounds are presented in Table 8 [71, 72]. [Pg.24]

Summarizing the above results, the following peculiarities of the interactions of niobium and tantalum compounds with alkali metal carbonates can be mentioned ... [Pg.37]

Since hydrofluoride synthesis is based on thermal treatment at relatively high temperatures, the possibility of obtaining certain fluorotantalates can be predicted according to thermal stability of the compounds. In the case of compounds whose crystal structure is made up of an octahedral complex of ions, the most important parameter is the anion-cation ratio. Therefore, it is very important to take in to account the ionic radius of the second cation in relation to the ionic radius of tantalum. Large cations, are not included in the... [Pg.46]

CRYSTAL CHEMISTRY OF TANTALUM AND NIOBIUM FLUORIDE COMPOUNDS... [Pg.59]

The ratio between the anionic and cationic radii leads to coordination numbers, the lowest of which is 6, which correspond to a octahedral polyhedron of anions around a central cation [135]. In this case, the compound structure type depends on the ratio of total number of anions and cations. The total number of anions (X) is calculated by summing up the number of oxygen (O) ions and of fluorine (F) ions X=0+F, while the total number of cations (Me) is the number of tantalum ions, niobium ions and other similar cations. [Pg.59]


See other pages where Of tantalum compounds is mentioned: [Pg.190]    [Pg.1595]    [Pg.415]    [Pg.190]    [Pg.1595]    [Pg.415]    [Pg.181]    [Pg.254]    [Pg.624]    [Pg.741]    [Pg.221]    [Pg.137]    [Pg.98]    [Pg.438]    [Pg.450]    [Pg.451]    [Pg.6]    [Pg.11]    [Pg.15]    [Pg.20]    [Pg.37]    [Pg.38]    [Pg.41]    [Pg.45]    [Pg.62]   


SEARCH



Compounds of Vanadium, Niobium and Tantalum

Half-sandwich Imido Compounds of Niobium and Tantalum

Hydrofluoride synthesis of niobium and tantalum compounds

Related Compounds of Vanadium, Niobium, and Tantalum

Synthesis of tantalum and niobium fluoride compounds

Tantalum compounds

© 2024 chempedia.info