Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Of phosphoric acid

It is however more complicated, esters of phosphorous acid being also formed (c/. p. 308). Iodides are usually prepared by a modification of this method, the ethanol being mixed with red phosphorus, and iodine added. The phosphorus iodide is thus formed in situ, and at once reacts with ethanol to give the corres ponding iodide. [Pg.97]

The crude acetonitrile contains as impurity chiefly acetic acid, arising from the action of phosphoric acid on the acetamide. Therefore add to the nitrile about half its volume of water, and then add powdered dry potassium carbonate until the well-shaken mixture is saturated. The potassium carbonate neutralises any acetic acid present, and at the same time salts out the otherwise water-soluble nitrile as a separate upper layer. Allow to stand for 20 minutes with further occasional shaking. Now decant the mixed liquids into a separating-funnel, run off the lower carbonate layer as completely as possible, and then pour off the acetonitrile into a 25 ml, distilling-flask into which about 3-4 g. of phosphorus pentoxide have been placed immediately before. Fit a thermometer and water-condenser to the flask and distil the acetonitrile slowly, collecting the fraction of b.p. 79-82°. Yield 9 5 g. (12 ml.). [Pg.122]

Phosphoric acid method. The advantages of phosphoric acid as a dehydrating agent in this preparation are the absence of carbonisation and the freedom of the product from sulphur dioxide. [Pg.243]

If the three esterifiable OH groups of phosphoric acid have to be esterified successively with different alcohols, they have to be protected. [Pg.166]

The O-S exchange method in presence of a-halogenated carbonyl compound is a very good one for thiazole compounds. The thioamide is prepared in situ by the action of amide upon phosphorus pentasulphide with solvent. The a-halogenated aldehyde reacts directly. But the O-Se exchange cannot be performed with a-halogenated carbonyl compounds because of the apparition of phosphoric acid. (Scheme 3), The C-Se bond is very sensitive to add pH. [Pg.220]

Dialkyl sulfates are esters of sulfuric acid tnalkyl phosphites are esters of phos phorous acid (H3PO3) and tnalkyl phosphates are esters of phosphoric acid (H3PO4)... [Pg.641]

Any one nucleotide, the basic building block of a nucleic acid, is derived from a molecule of phosphoric acid, a molecule of a sugar (either deoxyribose or ribose), and a molecule of one of five nitrogen compounds (bases) cytosine (C), thymine (T), adenine (A), guanine (G), uracil (U). [Pg.421]

Wet-Process Phosphoric Acid. As indicated in Figure 7, over 95% of the phosphate fertilizer used in the United States is made by processes that require an initial conversion of all or part of the phosphate ore to phosphoric acid. On a worldwide basis also, the proportion of phosphate fertilizer made with phosphoric acid is very high. Thus processes for production of phosphoric acid are of great importance to the fertilizer industry (see PHOSPHORIC ACID AND THE PHOSPHATES). [Pg.224]

There are numerous variations of the wet process, but all involve an initial step in which the ore is solubilized in sulfuric acid, or, in a few special instances, in some other acid. Because of this requirement for sulfuric acid, it is obvious that sulfur is a raw material of considerable importance to the fertilizer industry. The acid—rock reaction results in formation of phosphoric acid and the precipitation of calcium sulfate. The second principal step in the wet processes is filtration to separate the phosphoric acid from the precipitated calcium sulfate. Wet-process phosphoric acid (WPA) is much less pure than electric furnace acid, but for most fertilizer production the impurities, such as iron, aluminum, and magnesium, are not objectionable and actually contribute to improved physical condition of the finished fertilizer (35). Impurities also furnish some micronutrient fertilizer elements. [Pg.224]

Chemistry ndProperties. The chemistry of phosphoric acid manufacture and purification is highly complex, largely because of the presence of impurities in the rock. The main chemical reaction in the acidulation of phosphate rock using sulfuric acid to produce phosphoric acid is... [Pg.225]

A broad comparison of the main types of processes, the strength and quaUty of phosphoric acid, and the form and quaUty of by-product calcium sulfate are summarized in Table 7. Because the dihydrate process is the most widely used, the quaUty of its acid and calcium sulfate and its P2O3 recovery are taken as reference for performance comparisons. Illustrative flow diagrams of the principal variations in process types have been pubUshed (39). Numerous other variations in process details ar also used (40—42). The majority of plants use a dihydrate process and some of these have production capacity up to 2100 of P2O3 per day. [Pg.225]

Triple (Concentrated) Superphosphate. The first important use of phosphoric acid in fertilizer processing was in the production of triple superphosphate (TSP), sometimes called concentrated superphosphate. Basically, the production process for this material is the same as that for normal superphosphate, except that the reactants are phosphate rock and phosphoric acid instead of phosphate rock and sulfuric acid. The phosphoric acid, like sulfuric acid, solubilizes the rock and, in addition, contributes its own content of soluble phosphoms. The result is triple superphosphate of 45—47% P2 s content as compared to 16—20% P2 5 normal superphosphate. Although triple superphosphate has been known almost as long as normal superphosphate, it did not reach commercial importance until the late 1940s, when commercial supply of acid became available. [Pg.226]

Resources of Sulfur. In most of the technologies employed to convert phosphate rock to phosphate fertilizer, sulfur, in the form of sulfuric acid, is vital. Treatment of rock with sulfuric acid is the procedure for producing ordinary superphosphate fertilizer, and treatment of rock using a higher proportion of sulfuric acid is the first step in the production of phosphoric acid, a production intermediate for most other phosphate fertilizers. Over 1.8 tons of sulfur is consumed by the world fertilizer industry for each ton of fertilizer phosphoms produced, ie, 0.8 t of sulfur for each ton of total 13.7 X 10 t of sulfur consumed in the United States for all purposes in 1991, 60% was for the production of phosphate fertilizers (109). Worldwide the percentage was probably even higher. [Pg.245]

Phosphoric Acid-Based Systems for Cellulosics. Semidurable flame-retardant treatments for cotton (qv) or wood (qv) can be attained by phosphorylation of cellulose, preferably in the presence of a nitrogenous compound. Commercial leach-resistant flame-retardant treatments for wood have been developed based on a reaction product of phosphoric acid with urea—formaldehyde and dicyandiamide resins (59,60). [Pg.476]

A newer self-intumescent phosphoric acid salt has been introduced by Albright WHson as Amgard EDAP, mainly as an additive for polyolefins. It is a finely divided soHd, mp 250°C, having a reported phosphoms content of 63 wt % as H PO. It appears to be the ethylenediamine salt of phosphoric acid (1 1). Unlike ammonium polyphosphate, it does not require a char-forming synergist (62). [Pg.476]

Phosphoric Acid. The only inorganic acid used for food appkeations is phosphoric acid [7664-38-2] H PO, which is second only to citric acid in popularity. The primary use of phosphoric acid is in carbonated beverages, especially root beer and cola. It is also used for its leavening, emulsification, nutritive enhancement, water binding, and antimicrobial properties. Eood-grade phosphoric acid is produced by the furnace method. Elemental phosphoms is burned to yield phosphoms pentoxide which is then reacted with water to produce phosphoric acid (see Phosphoric acid and the phosphates) (12). [Pg.436]

Hydrogen Chloride as By-Product from Chemical Processes. Over 90% of the hydrogen chloride produced in the United States is a by-product from various chemical processes. The cmde HCl generated in these processes is generally contaminated with impurities such as unreacted chlorine, organics, chlorinated organics, and entrained catalyst particles. A wide variety of techniques are employed to treat these HCl streams to obtain either anhydrous HCl or hydrochloric acid. Some of the processes in which HCl is produced as a by-product are the manufacture of chlorofluorohydrocarbons, manufacture of aUphatic and aromatic hydrocarbons, production of high surface area siUca (qv), and the manufacture of phosphoric acid [7664-38-2] and esters of phosphoric acid (see Phosphoric acid and phosphates). [Pg.445]

The condensation of cyclohexanol or cyclohexene is generally carried out in the presence of phosphoric acid, pyrophosphoric acid, or HY 2eohtes the aromatization of intermediate cyclohexyUiydroquinone [4197-75-5] (19) is realized in the presence of a dehydrogenation catalyst. [Pg.491]

Post-curing and chemical modification improves chemical and solvent resistance (20). Paraformaldehyde and acetylene diurea are added to a hot borax solution. Toluenesulfonamide (p and o), a few drops of phosphorous acid. Brilliant Yellow 6G [2429-76-7] Rhodamine E3B, and Rhodamine 6GDN [989-38-8] are added. After heating, the mass is cured in an oven at 150°C. The resulting cured resin is thermoset but can be ground to fine particle sizes. [Pg.301]


See other pages where Of phosphoric acid is mentioned: [Pg.306]    [Pg.307]    [Pg.308]    [Pg.380]    [Pg.368]    [Pg.77]    [Pg.869]    [Pg.1078]    [Pg.1195]    [Pg.21]    [Pg.18]    [Pg.34]    [Pg.126]    [Pg.248]    [Pg.264]    [Pg.434]    [Pg.493]    [Pg.769]    [Pg.941]    [Pg.450]    [Pg.232]    [Pg.234]    [Pg.235]    [Pg.137]    [Pg.225]    [Pg.466]    [Pg.222]    [Pg.70]    [Pg.441]    [Pg.320]    [Pg.323]    [Pg.323]   
See also in sourсe #XX -- [ Pg.331 ]




SEARCH



Attack of Phosphoric Acid on Metals

Attack of Phosphoric Acid on Oxides

Condensation of phosphoric acid

Cyclic Esters of Phosphorous Acid

Cyclic esters of phosphoric acid

Debenzylation of phosphoric acid ester

Dissolution Characteristics of Phosphoric Acid

Effect of cations in phosphoric acid solutions

Effect of phosphoric acid

Esters of Nitric, Sulfuric, and Phosphoric Acid

Esters of Phosphorous Acid

Esters of phosphoric acid

Experiment 52 Potentiometric Titration of Phosphoric Acid in Soda Pop

Extraction of phosphoric acid

Formation of Phosphoric Acid from Phosphate Rocks

Hydration of phosphoric-acid-anodized aluminum

Hydrogen chloride removal of water and, from phosphorous acid

Hydrolytic Reactions of Phosphoric and Thiophosphoric Acid Esters

Manufacture of phosphoric acid

Neutral Di- and Triesters of Phosphorous Acid

Nitration with mixtures of nitric and phosphoric acids

Of phosphoric acid derivatives

Oxidation of Phosphorous Acid by Peroxodisulfate Ions

Oxidation of hypophosphorous and phosphorous acids

Production of Phosphoric Acid Using Acids Other Than Sulfuric

Purification of Phosphoric Acid

Reactions of Phosphoric Acid Derivatives

Reactions of Phosphoric Acid and its Derivatives

Reactions of Phosphoric Acids and their Derivatives

Residual Life of Natural Rubber Lining in a Phosphoric Acid Storage Tank

Salts of Phosphoric Acids

Shipment of Phosphoric Acid

Solvolyses of Phosphoric Acid Derivatives

Special Features of Aqueous Phosphoric Acid Solutions

Synthesis of Phosphoric Acids and their Derivatives

The Influence of Antimony, Tin, and Phosphoric Acid

The Role of Electrocatalysis in Phosphoric Acid Fuel-Cells (PAFCs)

Uses of Phosphoric Acid Derivatives

© 2024 chempedia.info