Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Of malonic acid

The reaction involving chlorite and iodide ions in the presence of malonic acid, the CIMA reaction, is another that supports oscillatory behaviour in a batch system (the chlorite-iodide reaction being a classic clock system the CIMA system also shows reaction-diffusion wave behaviour similar to the BZ reaction, see section A3.14.4). The initial reactants, chlorite and iodide are rapidly consumed, producing CIO2 and I2 which subsequently play the role of reactants . If the system is assembled from these species initially, we have the CDIMA reaction. The chemistry of this oscillator is driven by the following overall processes, with the empirical rate laws as given ... [Pg.1102]

The term Knoevenagel Condensation was originally applied to the base-catalysed condensation of the carbonyl ( CO) group of aldehydes and ketones with the reactive methylene group of malonic acid, with loss of w ater ... [Pg.279]

Add 4 g. of malonic acid to 4 ml. of pyridine, and then add 3 1 ml. of crotonaldehyde. Boil the mixture gently under reflux over an asbestos-covered gauze, using a small Bunsen flame, for 40 minutes and then cool it in ice-water. Meanwhile add 2 ml. of concentrated sulphuric acid carefully with shaking to 4 ml. of water, cool the diluted acid, and add it with shaking to the chilled reaction-mixture. Sorbic acid readily crystallises from the solution. Filter the sorbic acid at the pump, wash it with a small quantity of cold water and then recrystallise it from water (ca, 25 ml.). The colourless crystals, m.p. 132-133°, weigh ro-i-2 g. [Pg.280]

Dissolve 50 g. of piperonal and 75 g. of malonic acid in a mixture of 160 ml. of pyridine and 2-5 ml. of piperidine contained in a 500 ml. round-bottomed flask, and heat under reflux for 1 hour on a water bath. A rapid evolution of carbon dioxide takes place. Complete the reaction by boiling the solution for 5 minutes. Cool, pour into excess of water containing enough hydrochloric acid to combine with the pyridine, filter ofiFthe piperonylacrylic acid, wash with a little water, and dry. The yield is almost quantitative and the acid is practically pure. It may be recrystallised from glacial acetic acid m.p. 238°. [Pg.719]

Thiazolomonomethine cyanines result from the condensation of 2 moles of 2-alkylmercaptothiazolium on 1 mole of malonic acid in pyridine (method C) but could not be obtained from this intermediate in acetic anhydride as is the case for other rings (26). [Pg.52]

Transition state in thermal decarboxylation of malonic acid... [Pg.817]

The protons attached to C 2 of malonic acid are not directly involved m the process and so may be replaced by other substituents without much effect on the ease of decar boxylation Analogs of malonic acid substituted at C 2 undergo efficient thermal decar boxylation... [Pg.817]

The thermal decarboxylation of malonic acid derivatives is the last step m a multistep synthesis of carboxylic acids known as the malonic ester synthesis This synthetic method will be described m Section 21 7... [Pg.818]

Multiprotic weak acids can be used to prepare buffers at as many different pH s as there are acidic protons. For example, a diprotic weak acid can be used to prepare buffers at two pH s and a triprotic weak acid can be used to prepare three different buffers. The Henderson-Hasselbalch equation applies in each case. Thus, buffers of malonic acid (pKai = 2.85 and = 5.70) can be prepared for which... [Pg.170]

Tribromoacetic acid [75-96-7] (Br CCOOH), mol wt 296.74, C2HBr302, mp 135°C bp 245°C (decomposition), is soluble in water, ethyl alcohol, and diethyl ether. This acid is relatively unstable to hydrolytic conditions and can be decomposed to bromoform in boiling water. Tribromoacetic acid can be prepared by the oxidation of bromal [115-17-3] or perbromoethene [79-28-7] with fuming nitric acid and by treating an aqueous solution of malonic acid with bromine. [Pg.90]

Physical Properties. Malonic acid, HOOC—CH2—COOH (1), was discovered and isolated in 1858 as a product of malic acid oxidation. The physical properties of malonic acid are Hsted in Table 1. [Pg.465]

Reactions. Heating an aqueous solution of malonic acid above 70°C results in its decomposition to acetic acid and carbon dioxide. Malonic acid is a useful tool for synthesizing a-unsaturated carboxyUc acids because of its abiUty to undergo decarboxylation and condensation with aldehydes or ketones at the methylene group. Cinnamic acids are formed from the reaction of malonic acid and benzaldehyde derivatives (1). If aUphatic aldehydes are used acryhc acids result (2). Similarly this facile decarboxylation combined with the condensation with an activated double bond yields a-substituted acetic acid derivatives. For example, 4-thiazohdine acetic acids (2) are readily prepared from 2,5-dihydro-l,3-thiazoles (3). A further feature of malonic acid is that it does not form an anhydride when heated with phosphorous pentoxide [1314-56-3] but rather carbon suboxide [504-64-3] [0=C=C=0], a toxic gas that reacts with water to reform malonic acid. [Pg.465]

Preparation. The industrial production of malonic acid is much less important than that of the malonates. Malonic acid is usually produced by acid saponification of malonates (9). Further methods which have been recendy investigated are the ozonolysis of cyclopentadiene [542-92-7] (10), the air oxidation of 1,3-propanediol [504-63-2] (11), or the use of microorganisms for converting nitriles into acids (12). [Pg.465]

Health and Safety Factors (Toxicology). No special precautions are necessary in the handling of malonic acid beyond normal safe handling measures. Due to its acidity malonic acid is classified as a mild irritant (skin irritation, rabbits). The LD q value (oral, rats) for malonic acid is 2750 mg/kg. Transport classification RID/ADR, IMDG-Code, lATA/lCAO not restricted. [Pg.466]

Knoevenagel condensation of malonic acid with heptaldehyde [111-71-7] followed by ring closure, gives the fragrance y-nonanoic lactone [104-61-0] (6) (14). Beside organic synthesis, malonic acid can also be used as electrolyte additive for anodization of aluminum [7429-90-5] (15), or as additive in adhesive compositions (16). [Pg.466]

Meldrum s Acid. Meldmm s acid [2033-24-1] (3) is commercially used for the production of monoesters of malonic acid and beta-keto acids (17). The chemistry of Meldmm s acid is extensively reviewed in Reference 18. [Pg.466]

The first synthesis of sorbic acid was from crotonaldehyde [4170-30-3] and malonic acid [141-82-2] in pyridine in 32% yield (2,17,18)- The yield can be improved with the use of malonic acid salts (19). One of the first commercial methods involved the reaction of ketene and crotonaldehyde in the presence of boron trifluoride in ether at 0°C (20,21). A P-lactone (4) forms and then reacts with acid, giving a 70% yield. [Pg.283]

Organic Solids A few organic compounds decompose before melting, mostly nitrogen compounds azides, diazo compounds, and nitramines. The processes are exothermic, classed as explosions, and may follow an autocatalytic law. Temperature ranges of decomposition are mostly 100 to 200°C (212 to 392°F). Only spotty results have been obtained, with no coherent pattern. The decomposition of malonic acid has been measured for both the solid and the supercooled liquid. The first-order specific rates at 126.3°C (259.3°F) were 0.00025/min for solid and 0.00207 for liquid, a ratio of 8 at II0.8°C (23I.4°F), the values were 0.000021 and 0.00047, a ratio of 39. The decomposition of oxalic acid (m.p. I89°C) obeyed a zero-order law at 130 to I70°C (266 to 338°F). [Pg.2122]

Notice that the caiboxyl group that stays behind during the decarboxylation of malonic acid has a hydroxyl function that is not directly involved in the process. Compounds that have substituents other than hydroxyl groups at this position undergo an analogous decarboxylation. [Pg.818]

The second procedure of this type was first described by Yamada et They used the diamidine of malonic acid (175) or cyanace-tamide (176) to prepare l-benzyl-5-amino-u-triazole-4-carboxamide... [Pg.245]

Comprehensive work in this field has been done by Slovak authors (98MI1, 95M1359, 96CCC269, 96CCC371, 97CCC99). They prepared 2-substituted (H, Me, Ph) 4-, 5-, 6-, and 7-nitrobenzoxazoles, which were then reduced to amines (not isolated) and subjected to subsequent nucleophilic substitution with activated enol ethers such as alkoxymethylene derivatives of malonic acid esters and nitrile, 3-oxobutanoic acid esters, pentanedione, or cyanoacetic acid esters to yield aminoethylenes 8. [Pg.194]

Catalytic reduction of the nitrile 79 in the presence of semicarbazide affords initially the semicarbazone of 80. Hydrolysis-interchange, for example in the presence of pyruvic acid, gives the aldehyde 80. Condensation with the half ester of malonic acid leads to the acrylic ester 81 the double bond is then removed by means of catalytic reduction (82). Base catalyzed reaction of the... [Pg.112]

One such compound, bropirimine (112), is described as an agent which has both antineo-plastic and antiviral activity. The first step in the preparation involves formation of the dianion 108 from the half ester of malonic acid by treatment with butyllithium. Acylation of the anion with benzoyl chloride proceeds at the more nucleophilic carbon anion to give 109. This tricarbonyl compound decarboxylates on acidification to give the beta ketoester 110. Condensation with guanidine leads to the pyrimidone 111. Bromination with N-bromosuccinimide gives bropirimine (112) [24]. [Pg.117]

Thus, if triose reductone is, in fact, the first intermediate in the periodate oxidation of malonaldehyde, the total consumption of periodate per mole of malonaldehyde should be four molar equivalents two moles of formic acid and one mole of carbon dioxide should be formed, in accordance with the sequence proposed by Fleury and his collaborators (22). As in the case of the periodate oxidation of malonic acid (32) the rate determining step should be the hydroxylation step. [Pg.110]


See other pages where Of malonic acid is mentioned: [Pg.816]    [Pg.817]    [Pg.818]    [Pg.819]    [Pg.898]    [Pg.170]    [Pg.465]    [Pg.493]    [Pg.335]    [Pg.816]    [Pg.817]    [Pg.818]    [Pg.819]    [Pg.898]    [Pg.314]    [Pg.165]    [Pg.333]    [Pg.799]   
See also in sourсe #XX -- [ Pg.4 , Pg.8 ]

See also in sourсe #XX -- [ Pg.318 ]




SEARCH



Malonates, acidity

Malonic acid

Malonic acid / Malonate

Malonic acid acidity

Malonic acid acids

© 2024 chempedia.info