Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Occupied elements

Viscosity additives are aliphatic polymers of high molecular weight whose main chain is flexible. It is known that in a poor solvent, interactions between the elements making up the polymer chain are stronger than interactions between the solvent and the chain (Quivoron, 1978), to the point that the polymer chain adopts a ball of yarn configuration. The macromolecules in this configuration occupy a small volume. The viscosity of a solution being related to the volume occupied by the solute, the effect of polymers on the viscosity in a poor solvent will be small. [Pg.355]

By reference to the outline periodic table shown on p. (i) we see that the metals and non-metals occupy fairly distinct regions of the table. The metals can be further sub-divided into (a) soft metals, which are easily deformed and commonly used in moulding, for example, aluminium, lead, mercury, (b) the engineering metals, for example iron, manganese and chromium, many of which are transition elements, and (c) the light metals which have low densities and are found in Groups lA and IIA. [Pg.14]

The element before carbon in Period 2, boron, has one electron less than carbon, and forms many covalent compounds of type BX3 where X is a monovalent atom or group. In these, the boron uses three sp hybrid orbitals to form three trigonal planar bonds, like carbon in ethene, but the unhybridised 2p orbital is vacant, i.e. it contains no electrons. In the nitrogen atom (one more electron than carbon) one orbital must contain two electrons—the lone pair hence sp hybridisation will give four tetrahedral orbitals, one containing this lone pair. Oxygen similarly hybridised will have two orbitals occupied by lone pairs, and fluorine, three. Hence the hydrides of the elements from carbon to fluorine have the structures... [Pg.57]

The elements of Period 2 (Li—F) cannot have a co valency greater than 4, because not more than four orbitals are available for bonding. In Period 3 (Na—Cl) similar behaviour would be expected, and indeed the molecule SiH4 is tetrahedral like that of CH4, and PH3 is like NH3 with a lone pair occupying one tetrahedral position. [Pg.57]

Ammonia is a colourless gas at room temperature and atmospheric pressure with a characteristic pungent smell. It is easily liquefied either by cooling (b.p. 240 K) or under a pressure of 8-9 atmospheres at ordinary temperature. Some of its physical and many of its chemical properties are best understood in terms of its structure. Like the other group head elements, nitrogen has no d orbitals available for bond formation and it is limited to a maximum of four single bonds. Ammonia has a basic tetrahedral arrangement with a lone pair occupying one position ... [Pg.216]

From radium called niton at first, L. nitens, shining) The element was discovered in 1900 by Dorn, who called it radium emanation. In 1908 Ramsay and Gray, who named it niton, isolated the element and determined its density, finding it to be the heaviest known gas. It is essentially inert and occupies the last place in the zero group of gases in the Periodic Table. Since 1923, it has been called radon. [Pg.152]

The different rows of elements are called periods. The period number of an element signifies the highest energy level an electron in that element occupies (in the unexcited state). The number of elements in a period increases as one traverses down the periodic table because as the energy level of the atom increases, the number of energy sub-levels per energy level increases. [Pg.219]

Whereas most chemists focused their attention on speculation about atoms and the question of atomic weights, the constant multiplicity in compounds occupied an increasingly central role. The new concept of substitution, i.e., the replacement of one element by another in a compound, started to make a major impact on chemistry in the 1840s. It was probably Dumas, who in the 1830s at the request of his father-in-law (who was the director of the famous Royal Sevres porcelain factory) resolved an event that upset a royal dinner party at the Tuil-... [Pg.29]

Practically all CNDO calculations are actually performed using the CNDO/ 2 method, which is an improved parameterization over the original CNDO/1 method. There is a CNDO/S method that is parameterized to reproduce electronic spectra. The CNDO/S method does yield improved prediction of excitation energies, but at the expense of the poorer prediction of molecular geometry. There have also been extensions of the CNDO/2 method to include elements with occupied d orbitals. These techniques have not seen widespread use due to the limited accuracy of results. [Pg.34]

Population analysis poses a particularly difficult problem for the / block elements. This is because of the many possible orbital combinations when both /and d orbitals are occupied in the valence. Although programs will generate a population analysis, extracting meaningful information from it can be very difficult. [Pg.290]

The period (or row) of the periodic table m which an element appears corresponds to the principal quantum number of the highest numbered occupied orbital (n = 1 m the case of hydrogen and helium) Hydrogen and helium are first row elements lithium in = 2) IS a second row element... [Pg.9]

If IS offen convenienf to speak of the valence electrons of an atom These are the outermost electrons the ones most likely to be involved m chemical bonding and reac tions For second row elements these are the 2s and 2p electrons Because four orbitals (2s 2p 2py 2pf) are involved the maximum number of electrons m the valence shell of any second row element is 8 Neon with all its 2s and 2p orbitals doubly occupied has eight valence electrons and completes the second row of the periodic table... [Pg.9]

The second step determines the LCAO coefficients by standard methods for matrix diagonalization. In an Extended Hiickel calculation, this results in molecular orbital coefficients and orbital energies. Ab initio and NDO calculations repeat these two steps iteratively because, in addition to the integrals over atomic orbitals, the elements of the energy matrix depend upon the coefficients of the occupied orbitals. HyperChem ends the iterations when the coefficients or the computed energy no longer change the solution is then self-consistent. The method is known as Self-Consistent Field (SCF) calculation. [Pg.44]

Cost Calculation. The main elements determining production cost are identical for fine chemicals and commodities (see Economic evaluation), a breakdown of production cost is given in Table 2. In multipurpose plants, where different fine chemicals occupying the equipment to different extents are produced during the year, a fair allocation of costs is a more difficult task. The allocation of the product-related costs, such as raw material and utiHties, is relatively easy. It is much more difficult to allocate for capital cost, labor, and maintenance. A simplistic approach is to define a daily rent by dividing the total yearly fixed cost of the plant by the number of production days. But that approach penalizes the simple products using only part of the equipment. [Pg.440]

Color Centers. Characteristics of a color center (1,3,7) include production by irradiation and destmction by heating. Exposure to light or even merely time in the dark may be sufficient to destroy these centers. Color arises from light absorption either from an electron missing from a normally occupied position, ie, a hole color center, or from an extra electron, ie, an electron color center. If the electron is a valence electron of a transition element, the term color center is not usually used. [Pg.222]

Theoretical studies of diffusion aim to predict the distribution profile of an exposed substrate given the known process parameters of concentration, temperature, crystal orientation, dopant properties, etc. On an atomic level, diffusion of a dopant in a siUcon crystal is caused by the movement of the introduced element that is allowed by the available vacancies or defects in the crystal. Both host atoms and impurity atoms can enter vacancies. Movement of a host atom from one lattice site to a vacancy is called self-diffusion. The same movement by a dopant is called impurity diffusion. If an atom does not form a covalent bond with siUcon, the atom can occupy in interstitial site and then subsequently displace a lattice-site atom. This latter movement is beheved to be the dominant mechanism for diffusion of the common dopant atoms, P, B, As, and Sb (26). [Pg.349]

When a sibcon crystal is doped with atoms of elements having a valence of less than four, eg, boron or gallium (valence = 3), only three of the four covalent bonds of the adjacent sibcon atoms are occupied. The vacancy at an unoccupied covalent bond constitutes a hole. Dopants that contribute holes, which in turn act like positive charge carriers, are acceptor dopants and the resulting crystal is -type (positive) sibcon (Fig. Id). [Pg.467]

Boranes also form derivatives ia which main group elements occupy a bridging position between two boron atoms, rather than a polyhedral vertex. An extensively studied system is -R MB Hg, where R = H, CH, C2H3, halogen, and M = Si, Ge, Sn, Pb (185). The stmcture of l-Br- J.-[(CH3)3Si]-B3H2... [Pg.245]


See other pages where Occupied elements is mentioned: [Pg.195]    [Pg.403]    [Pg.119]    [Pg.769]    [Pg.2340]    [Pg.2340]    [Pg.7]    [Pg.13]    [Pg.139]    [Pg.361]    [Pg.387]    [Pg.49]    [Pg.128]    [Pg.142]    [Pg.250]    [Pg.49]    [Pg.238]    [Pg.110]    [Pg.369]    [Pg.382]    [Pg.101]    [Pg.228]    [Pg.252]    [Pg.440]    [Pg.572]    [Pg.172]    [Pg.1926]    [Pg.1970]    [Pg.18]    [Pg.186]    [Pg.196]    [Pg.223]    [Pg.326]   
See also in sourсe #XX -- [ Pg.46 ]

See also in sourсe #XX -- [ Pg.46 ]




SEARCH



© 2024 chempedia.info