Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nucleus division

A septum is formed in the middle of the cell as a result of the synthesis of portions of the membrane and the cell wall. It separates the mother cell little by little into two daughter cells. The genetic material and the other cellular components are simultaneously distributed between them. Finally, when the septum is completely formed, the two daughter cells separate. Cell and nucleus division are not synchronous replication is quicker. Moreover, a replication cycle can start before cell division is... [Pg.122]

Eukaryotic ceils possess a discrete, membrane-bounded nucleus, the repository of the cell s genetic material, which is distributed among a few or many chromosomes. During ceil division, equivalent copies of this genetic material must be passed to both daughter ceils through duplication and orderly partitioning of the chromosomes by the process known as mitosis. Like prokaryotic... [Pg.26]

The DNA in a eukaryotic cell nucleus during the interphase between cell divisions exists as a nucleoprotein complex called chromatin. The proteins of chromatin fall into two classes histones and nonhistone chromosomal proteins. [Pg.379]

Zell-kera, n. cell nucleus, -kemteilung, /. Biol.) nudear division, -kdrper, m. cellular body or substance, -masse, /. cellular substance. [Pg.525]

Nuclear fission is a process in which a heavy nucleus—usually one with a nucleon number of two hundred or more—separates into two nuclei. Usually the division liberates neutrons and electromagnetic radiation and releases a substantial amount of energy. The discoveiyi of nuclear fission is credited to Otto I lahn and Fritz Strassman. In the process of bombarding uranium with neutrons in the late 1930s, they detected several nuclear products of significantly smaller mass than uranium, one of which was identified as Ba. The theorectical underpinnings that exist to this day for nuclear fission were proposed by Lise Meitner and Otto Frisch. Shortly after Hahn and Strassman s discovery. [Pg.858]

Extrahypothalamic OX-B-like immunoreactivity, reminiscent to that of CRF, has been described in clustered GABAergic neuronal populations, in the lateral division of central nucleus ofthe amygdala, the bednucleus of the stria terminalis, and in the hippocampus. Moreover, ectopic expression of preproorexin mRNA in the gut, ependymal cells, neuroblastomas, and of orexin receptors in adrenal gland, cancer and hematopietic stem cells suggests yet unexplored roles of orexins as paracrine factors controlling blood-brain barrier, and tumor or stem cell function. [Pg.911]

Fig. 2.3 The development of polarity and asymmetric division in Saccharomyces cerevisiae. The diagram is reproduced in a slightly simplified form from the work of Lew Reed (1995) with the permission of Current Opinion in Genetics and Development, (a) The F-actin cytoskeleton strands = actin cables ( ) cortical actin patches, (b) The polarity of growth is indicated by the direction of the arrows (arrows in many directions signifies isotropic growth), (c) 10-nm filaments which are assembled to form a ring at the neck between mother and bud. (d) Construction of the cap at the pre-bud site. Notice that the proteins of the cap become dispersed at the apical/isotropic switch, first over the whole surface of the bud, then more widely. Finally, secretion becomes refocussed at the neck in time for cytokinesis, (e) The status and distribution of the nucleus and microtubules of the spindle. Notice how the spindle pole body ( ) plays an important part in orientation of the mitotic spindle. Fig. 2.3 The development of polarity and asymmetric division in Saccharomyces cerevisiae. The diagram is reproduced in a slightly simplified form from the work of Lew Reed (1995) with the permission of Current Opinion in Genetics and Development, (a) The F-actin cytoskeleton strands = actin cables ( ) cortical actin patches, (b) The polarity of growth is indicated by the direction of the arrows (arrows in many directions signifies isotropic growth), (c) 10-nm filaments which are assembled to form a ring at the neck between mother and bud. (d) Construction of the cap at the pre-bud site. Notice that the proteins of the cap become dispersed at the apical/isotropic switch, first over the whole surface of the bud, then more widely. Finally, secretion becomes refocussed at the neck in time for cytokinesis, (e) The status and distribution of the nucleus and microtubules of the spindle. Notice how the spindle pole body ( ) plays an important part in orientation of the mitotic spindle.
Fig. 2.6 The moqjhological events of sporulation in Saccharomyces cerevisiae. (a) starved cell V, vacuole LG, lipid granule ER, endoplasmic reticulum CW, cell wall M, mitochondrion S, spindle pole SM, spindle microtubules N, nucleus NO, nucleolus, (b) Synaptonemal complex (SX) and development of polycomplex body (PB) along with division of spindle pole body in (c). (d) First meiotic division which is completed in (e). (f) Prepararation for meiosis II. (g) Enlargement of prospore wall, culminating in enclosure of separate haploid nuclei (h). (i) Spore coat (SC) materials produced and deposited, giving rise to the distinct outer spore coat (OSC) seen in the completed spores of the mature ascus (j). Reproduced from the review by Dickinson (1988) with permission from Blackwell Science Ltd. Fig. 2.6 The moqjhological events of sporulation in Saccharomyces cerevisiae. (a) starved cell V, vacuole LG, lipid granule ER, endoplasmic reticulum CW, cell wall M, mitochondrion S, spindle pole SM, spindle microtubules N, nucleus NO, nucleolus, (b) Synaptonemal complex (SX) and development of polycomplex body (PB) along with division of spindle pole body in (c). (d) First meiotic division which is completed in (e). (f) Prepararation for meiosis II. (g) Enlargement of prospore wall, culminating in enclosure of separate haploid nuclei (h). (i) Spore coat (SC) materials produced and deposited, giving rise to the distinct outer spore coat (OSC) seen in the completed spores of the mature ascus (j). Reproduced from the review by Dickinson (1988) with permission from Blackwell Science Ltd.
However, the division of the electron density at the iron nucleus into contributions arising from Is through 4s contributions can be done conveniently at the level of the canonical molecular orbitals. This arises because the iron Is, 2s, and 3s orbitals fall into an orbital energy range where they are well isolated and hence do not mix with any hgand orbital. Hence, the Is, 2s, and 3s contributions are well defined in this way. The 4s contribution then arises typically from several, if not many, molecular orbitals in the valence region that have contributions from the iron s-orbitals. Thus, the difference between the total electron density at the nucleus and... [Pg.155]

The first cell cycle of the mouse embryo differs in many respects from the second and the following cell cycles. It is characterized by a long Gl phase that starts after the penetration of the spermatozoon or artificial activation of the oocyte. During this period the chromatin of the oocyte completes the second meiotic division and forms the female pronucleus. At the same time, in the fertilized egg, the highly condensed chromatin of the sperm nucleus decondenses and sperm-specific proteins, protamines, are replaced by histones. After the initial sperm chromatin... [Pg.79]

Nurse In fission yeast we can get asymmetrical divisions and make cells different sizes in various ways. Nuclear volume is influenced by subsequent cytoplasmic volume, and of course it is also directly influenced by ploidy. In an asymmetric division there will be a small nucleus and a big nucleus. [Pg.157]

The nucleus contains bundles of a fibrous material known as chromatin, which is made up of mixed proteins and deoxyribonucleic acid (DNA), the substance that carries the genetic information of the living organism of which the cell is a component. All cells replicate by division. When a cell replicates, DNA in the chromatin of the nucleus passes the genetic information from one generation to the next one. As the cell divides, the chromatin clusters into rodlike structures known as chromo-... [Pg.288]

The nucleus of all eucariotic cells contains the carrier of the genetic information in the chromosomes. It is possible to visualize the chromosomes and analyze their number and pattern during a special period of cell division (the metaphase). Alterations from their normal shapes are observed as structural chromosome aberrations. These are chromosome type aberrations (terminal and interstitial deletions, dicentrics and rings), chromatid aberrations (gaps, breaks and exchanges) and sister chromatid exchanges. Spontanous frequencies of such chromosome... [Pg.488]

The staining of germinated pollen of Hippeastrum hybridum with colchicine demonstrates green-yellow emission of microtubules (better vision in black-white image) around nuclei of pollen grain (threads at the division of the nucleus) and spermium on the tip of the pollen tube, where spermium moves, as well as in some bridge sites of the tube (Fig. 10). The similar fluorescent allelochemicals may be also used as fluorescent dyes at the cellular diagnostics (Roshchina, 2005 b). [Pg.121]


See other pages where Nucleus division is mentioned: [Pg.201]    [Pg.201]    [Pg.1115]    [Pg.172]    [Pg.386]    [Pg.105]    [Pg.242]    [Pg.525]    [Pg.648]    [Pg.897]    [Pg.2]    [Pg.202]    [Pg.4]    [Pg.48]    [Pg.1115]    [Pg.166]    [Pg.316]    [Pg.137]    [Pg.79]    [Pg.84]    [Pg.115]    [Pg.140]    [Pg.290]    [Pg.372]    [Pg.455]    [Pg.83]    [Pg.210]    [Pg.284]    [Pg.286]    [Pg.6]    [Pg.458]    [Pg.67]    [Pg.366]    [Pg.414]    [Pg.33]    [Pg.222]    [Pg.179]    [Pg.213]   
See also in sourсe #XX -- [ Pg.71 , Pg.72 ]




SEARCH



© 2024 chempedia.info