Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nucleophilic catalytic cycle

All chiral organocatalysts developed to date that mediate Type I acyl transfer processes are believed to impart their acceleration and stereoinduction primarily via a nucleophilic catalytic cycle (Fig. 8.1) [35],... [Pg.290]

Palladation of aromatic compounds with Pd(OAc)2 gives the arylpalladium acetate 25 as an unstable intermediate (see Chapter 3, Section 5). A similar complex 26 is formed by the transmetallation of PdX2 with arylmetal compounds of main group metals such as Hg Those intermediates which have the Pd—C cr-bonds react with nucleophiles or undergo alkene insertion to give oxidized products and Pd(0) as shown below. Hence, these reactions proceed by consuming stoichiometric amounts of Pd(II) compounds, which are reduced to the Pd(0) state. Sometimes, but not always, the reduced Pd(0) is reoxidized in situ to the Pd(II) state. In such a case, the whole oxidation process becomes a catalytic cycle with regard to the Pd(II) compounds. This catalytic reaction is different mechanistically, however, from the Pd(0)-catalyzed reactions described in the next section. These stoichiometric and catalytic reactions are treated in Chapter 3. [Pg.14]

All these intermediate complexes undergo various transformations such as insertion, transmetallation, and trapping with nucleophiles, and Pd(0) is regenerated at the end in every case. The regenerated Pd(0) starts the catalytic cycle again, making the whole process catalytic. These reactions catalyzed by Pd(0) are treated in Chapter 4. [Pg.16]

The mechanism for the lipase-catalyzed reaction of an acid derivative with a nucleophile (alcohol, amine, or thiol) is known as a serine hydrolase mechanism (Scheme 7.2). The active site of the enzyme is constituted by a catalytic triad (serine, aspartic, and histidine residues). The serine residue accepts the acyl group of the ester, leading to an acyl-enzyme activated intermediate. This acyl-enzyme intermediate reacts with the nucleophile, an amine or ammonia in this case, to yield the final amide product and leading to the free biocatalyst, which can enter again into the catalytic cycle. A histidine residue, activated by an aspartate side chain, is responsible for the proton transference necessary for the catalysis. Another important factor is that the oxyanion hole, formed by different residues, is able to stabilize the negatively charged oxygen present in both the transition state and the tetrahedral intermediate. [Pg.172]

The mechanism of the nickel (0) catalyzed arylation of nucleophiles corresponds to this catalytic cycle according mostly to the results of Kochi (ref. 70) (Fig. 4). [Pg.244]

According to these conclusions, it is possible to propose a catalytic cycle (Fig. 20) involving no radical species, but a copper(I) complex with the classical oxidative addition, nucleophilic substitution and reductive elimination resulting lastly in the arylated nucleophile. [Pg.256]

Allyl carbonate esters are also useful hydroxy-protecting groups and are introduced using allyl chloroformate. A number of Pd-based catalysts for allylic deprotection have been developed.209 They are based on a catalytic cycle in which Pd° reacts by oxidative addition and activates the allylic bond to nucleophilic substitution. Various nucleophiles are effective, including dimedone,210 pentane-2,4-dione,211 and amines.212... [Pg.266]

The suggested catalytic cycle for the diamine catalysts indicates that the NH group of the diamine plays a direct role in the hydride transfer through a six-membered TS.53 A feature of this mechanism is the absence of direct contact between the ketone and the metal. Rather, the reaction is pictured as a nucleophilic delivery of hydride from ruthenium, concerted with a proton transfer from nitrogen. [Pg.392]

These reactions presumably proceed by catalytic cycles in which the carbonyl component is silylated. The silyl ether can then act as a nucleophile, and an oxonium ion is generated by elimination of a disilyl ether. The reduction of the oxonium ion regenerates the silyl cation, which can continue the catalytic cycle. [Pg.428]

The catalytic cycle for these reactions is believed to involve dinuclear complexes formed among the zinc chelate, the aldehyde, and the zinc atom that releases the nucleophile. [Pg.654]

In addition to bromides and iodides, the reaction has been successfully extended to chlorides,163 triflates,164 and nonafluorobutanesulfonates (nonaflates).165 These reaction conditions permit substitution in both electron-poor and electron-rich aryl systems by a variety of nitrogen nucleophiles, including alkyl or aryl amines and heterocycles. These reactions proceed via a catalytic cycle involving Pd(0) and Pd(II) intermediates. [Pg.1046]

Scheme 2.24 Whole catalytic cycle of frost s Mo-7t-allyl nucleophilic reaction. Scheme 2.24 Whole catalytic cycle of frost s Mo-7t-allyl nucleophilic reaction.
As described in the preceding sections, many domino reactions start with the formation of vinyl palladium species, these being formed by an oxidative addition of vinylic halides or triflates to Pd°. On the other hand, such an intermediate can also be obtained from the addition of a nucleophile to a divalent palladium-coordinated allene. Usually, some oxidant must be added to regenerate Pd11 from Pd° in order to achieve a catalytic cycle. Lu and coworkers [182] have used a protonolysis reaction of the formed carbon-palladium bond in the presence of excess halide ions to regenerate Pd2+ species. Thus, reaction of 6/1-386 and acrolein in the presence of Pd2+ and LiBr gave mainly 6/1-388. In some reactions 6/1-389 was formed as a side product (Scheme 6/1.98). [Pg.421]

The rate of the methanol carbonylation reaction in the presence of iridium catalysts is very similar to that observed in the presence of rhodium catalysts under comparable conditions (29). This is perhaps initially surprising in view of the well-recognized greater nucleophilicity of iridium(I) complexes as compared to their rhodium(I) analogues. It can be seen from the above studies that the difference in the chemistry of the metals at the trivalent stage of the catalytic cycle serves to produce faster rates of alkyl migration with the rhodium system thus, overall the two metal catalysts give comparable rates. [Pg.266]

The proposed catalytic cycle of the ruthenium-catalyzed intermolecular Alder-ene reaction is shown in Scheme 21 (cycle A) and proceeds via ruthenacyclopentane 100. Support for this mechanism is derived from the observation that the intermediate can be trapped intramolecularly by an alcohol or amine nucleophile to form the corresponding five-or six-membered heterocycle (Scheme 21, cycle B and Equation (66)).74,75 Four- and seven-membered rings cannot be formed via this methodology, presumably because the competing /3-hydride elimination is faster than interception of the transition state for these substrates, 101 and 102, only the formal Alder-ene product is observed (Equations (67) and (68)). [Pg.584]

In Scheme 2 51, species 133 is formed from the precatalyst 132 and TifOPr )4. It is then converted to complex G upon addition of diethylzinc. Reaction between species G and an aldehyde furnishes intermediate E, which accomplishes the enantioselective addition of the nucleophile to the carbonyl group. Intervention of two molecules of Ti(OPr )4 releases the alkylated product, regenerates the active catalyst 133, and also completes the catalytic cycle. This cycle explains the fact that at least one equivalent of Ti(OPr )4 is required for an effective reaction. [Pg.116]

In a lipase-catalyzed reaction, the acyl group of the ester is transferred to the hydroxyl group of the serine residue to form the acylated enzyme. The acyl group is then transferred to an external nucleophile with the return of the enzyme to its preacylated state to restart the catalytic cycle. A variety of nucleophiles can participate in this process. For example, reaction in the presence of water results in hydrolysis, reaction in alcohol results in esterification or transesterification, and reaction in amine results in amination. Kirchner et al.3 reported that it was possible to use hydrolytic enzymes under conditions of limited moisture to catalyze the formation of esters, and this is now becoming very popular for the resolution of alcohols.4... [Pg.453]

During water-gas shift in pyridine solution, they isolated [PtH(py)L2]BF4, while from water-gas shift run in acetone solution, they isolated raft -[PtF[(CO)L2]BF4. The results indicated a solvent effect. That is, it was difficult to substitute coordinated pyridine with CO, but it was easier to substitute acetone with CO, via [PtH(Solvent)L2]OH + CO <-> [PtH(CO)L2]OH + Solvent. Following this important solvent-facilitated CO addition, they proposed a nucleophilic attack of OH-on the coordinated CO, via [PtH(CO)L2]OH <-> [PtH(COOH)L2]. The next step is thermal decomposition of the species, liberating C02, via the decomposition [PtH(COOH)L2] <-> [PtH2L2] + C02. CO addition was proposed to assist in decomposing the hydride to liberate H2. A more detailed description of the catalytic cycle is provided in Scheme 19. [Pg.139]

Cyanohydrin diethyl phosphates 87, easily accessible from propargyl aldehydes or ketones of type 86, reacted with lithium dialkylcuprates or similar reagents via an Sn2 process to give cyanoallenes in moderate to good yields [135]. The transformations 80 —> 81 and 84 —> 85 are only formally also SN2 reactions. Thus, plausible catalytic cycles, which include different short-lived palladium intermediates, have been postulated to explain these nucleophilic substitution reactions [127, 134],... [Pg.370]

The reaction of an allene with an aryl- or vinylpalladium(II) species is a widely used way of forming a Jt-allyl complex. Subsequent nucleophilic attack on this intermediate gives the product and palladium(O) (Scheme 17.1). Oxidative addition of palladium ) to an aryl or vinyl halide closes the catalytic cycle that does not involve an overall oxidation. a-Allenyl acids 27, however, react with palladium(II) instead of with palladium(O) to afford cr-vinylpalladium(II) intermediates 28 (Scheme 17.12). These cr-complexes than react with either an allenyl ketone [11] or with another alle-nyl acid [12] to form 4-(3 -furanyl)butenolides 30 or -dibutenolides 32, respectively. [Pg.981]

Hydrogenation of CO2 can also be carried out in water [10c, 15]. In this case, the substrate is not CO2 but HCO3, and insertion of HCO3 into the Ru-H bond is involved in the catalytic cycle. In our opinion, this step can be seen as a nucleophilic attack of the hydride ligand to the positively charged C atom of HCO3. ... [Pg.82]

Tandem procedures under hydroformylation conditions cannot only make use of the intrinsic reactivity of the aldehyde carbonyl group and its acidic a-position but they also include conversions of the metal alkyl and metal acyl systems which are intermediates in the catalytic cycle of hydroformylation. Metal alkyls can undergo -elimination leading to olefin isomerization, or couplings, respectively, insertion of unsaturated units enlarging the carbon skeleton. Similarly, metal acyls can be trapped by addition of nucleophiles or undergo insertion of unsaturated units to form synthetically useful ketones (Scheme 1). [Pg.75]

In the alkoxycarbonylation, the hydride mechanism initiates through the olefin insertion into a Pd - H bond, followed by the insertion of CO into the resulting Pd-alkyl bond with formation of an acyl intermediate, which undergoes nucleophilic attack of the alkanol to give the ester and the Pd - H+ species, which initiates the next catalytic cycle [35,40,57,118]. Alternatively, it has been proposed that a ketene intermediate forms from the acyl complex via /3-hydride elimination, followed by rapid addition of the alcohol [119]. In principle the alkyl intermediate may form also by protonation of the olefin coordinated to a Pd(0) complex [120,121]. [Pg.155]


See other pages where Nucleophilic catalytic cycle is mentioned: [Pg.231]    [Pg.337]    [Pg.243]    [Pg.133]    [Pg.83]    [Pg.356]    [Pg.358]    [Pg.96]    [Pg.455]    [Pg.91]    [Pg.142]    [Pg.306]    [Pg.325]    [Pg.349]    [Pg.131]    [Pg.252]    [Pg.668]    [Pg.672]    [Pg.108]    [Pg.128]    [Pg.169]    [Pg.199]    [Pg.200]    [Pg.207]    [Pg.96]    [Pg.973]    [Pg.165]    [Pg.165]   
See also in sourсe #XX -- [ Pg.184 ]




SEARCH



Catalytic cycle

Catalytic cycle nucleophilic displacement reactions

© 2024 chempedia.info