Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nucleophilic carbon

Carbon-centered nucleophiles are those compounds or intermediates which contain an electron-rich carbon atom and thus are capable of donating an electron pah from that carbon atom to an electrophile. The electron pair that is donated is found in a filled orbital in the nucleophilic carbon and the electrons are not tighdy bound. Donation to the electrophilic carbon occurs by overlap of the filled orbital of the donor with an unfilled orbital of the acceptor. The most common carbon nucleophiles fall into three main classes  [Pg.218]

They are, however, reactive carbon nucleophiles. Examples of enolates include anionic derivatives of aldehydes, ketones, acid derivatives, and dicarbonyl compounds. [Pg.218]

Besides a heteroatom substituent, which renders a double bond electron rich by resonance interaction of the lone pairs with the n system, other substituents can [Pg.219]

Carbon-centered electrophiles are compounds or intermediates which are electron poor and thus capable of accepting electrons from electron donors. To be an electron acceptor, an electrophile must have an unfilled orbital on carbon available for overlap with a filled orbital of the donor. Unfilled atomic p orbitals or antibonding orbitals (both a and it ) are the most common types of acceptor orbitals. The most common carbon electrophiles fall into four major categories  [Pg.220]

Triphenylmethyl (trityl) tetrafluoroborate, on the other hand, is sp2 hybridized but it is also extremely reactive toward electron donors. The acceptor orbital of the trityl cation is an unfilled 2p atomic orbital on the charged carbon. These carbon electrophiles are isolable compounds, but they are extremely reactive with any sort of electron donor (H2O vapor is a common culprit). [Pg.220]


The selective intermolecular addition of two different ketones or aldehydes can sometimes be achieved without protection of the enol, because different carbonyl compounds behave differently. For example, attempts to condense acetaldehyde with benzophenone fail. Only self-condensation of acetaldehyde is observed, because the carbonyl group of benzophenone is not sufficiently electrophilic. With acetone instead of benzophenone only fi-hydroxyketones are formed in good yield, if the aldehyde is slowly added to the basic ketone solution. Aldols are not produced. This result can be generalized in the following way aldehydes have more reactive carbonyl groups than ketones, but enolates from ketones have a more nucleophilic carbon atom than enolates from aldehydes (G. Wittig, 1968). [Pg.56]

An important method for construction of functionalized 3-alkyl substituents involves introduction of a nucleophilic carbon synthon by displacement of an a-substituent. This corresponds to formation of a benzylic bond but the ability of the indole ring to act as an electron donor strongly influences the reaction pattern. Under many conditions displacement takes place by an elimination-addition sequence[l]. Substituents that are normally poor leaving groups, e.g. alkoxy or dialkylamino, exhibit a convenient level of reactivity. Conversely, the 3-(halomethyl)indoles are too reactive to be synthetically useful unless stabilized by a ring EW substituent. 3-(Dimethylaminomethyl)indoles (gramine derivatives) prepared by Mannich reactions or the derived quaternary salts are often the preferred starting material for the nucleophilic substitution reactions. [Pg.119]

The nucleophilic carbon of ketomethylene compounds can react with anhydrobases of different species in a basic medium. This reaction presents a narrow similitude with -CHj attack. The resulting dye, neut-rodimethine cyanine either mesomethyl-substituted or not. varies with the nature of the anhydro base (Scheme 30) (53. 54). [Pg.47]

The electronic structure of a trimethine asymmetrical cyanine, controls the attack of a ketomethylene (Scheme 54). There is a condensation of the nucleophilic carbon on the electrophilic central carbon atom of the methine chain, leading to a neutrodimethine cyanine and simultaneously elimination of the more basic nucleus. [Pg.62]

The properties of organometallic compounds are much different from those of the other classes we have studied to this point Most important many organometallic com pounds are powerful sources of nucleophilic carbon something that makes them espe cially valuable to the synthetic organic chemist For example the preparation of alkynes by the reaction of sodium acetylide with alkyl halides (Section 9 6) depends on the presence of a negatively charged nucleophilic carbon m acetylide ion... [Pg.587]

Because etiolate anions are sources of nucleophilic carbon one potential use m organic syn thesis IS their reaction with alkyl halides to give a alkyl denvahves of aldehydes and ketones... [Pg.781]

Many in ortant organic reactions involve nucleophilic carbon species (carbanions). The properties of carbanions will be discussed in detail in Chapter 7 and in Part B,... [Pg.228]

Secondary amines cannot form imines, and dehydration proceeds to give carbon-carbon double bonds bearing amino substituents (enamines). Enamines were mentioned in Chapter 7 as examples of nucleophilic carbon species, and their synthetic utility is discussed in Chapter 1 of Part B. The equilibrium for the reaction between secondary amines and carbonyl compounds ordinarily lies far to the left in aqueous solution, but the reaction can be driven forward by dehydration methods. [Pg.461]

All that has been said in this section applies with equal force to the use of organo-lithium reagents in the synthesis of alcohols. Grignard reagents are one source of nucleophilic carbon organolithium reagents are another. Both have substantial carbanionic char acter in their- car bon-metal bonds and undergo the same kind of reaction with aldehydes and ketones. [Pg.601]

Hudson has noted that any explanation of the a effect must account both for the enhanced nucleophilicity and the lack of effect on the Ka of the nucleophile he attributes the a effect to a balance (which is different for nucleophile-carbon and nucleophile-proton interactions) between an orbital splitting eontribution and an electrostatie bond polarity factor. [Pg.357]

Examine the eleetrostatic potential map of eaeh nueleophile (enamine, silyl enol ether, lithium enolate and enol) with emphasis on the face of the nucleophilic alkene carbon. Rank the nucleophiles from most electron rich to least electron rich. What factors are responsible for this order (Hint For each molecule, consider an alternative Lewis structure to that given above that places a negative charge on the nucleophilic carbon.)... [Pg.166]

With alkali cyanides, a reaction via a SN2-mechanism takes place the alkyl halide is attacked by cyanide with the more nucleophilic carbon center rather than the nitrogen center, and the alkylnitrile is formed. In contrast, with silver cyanide the reaction proceeds by a SnI-mechanism, and an isonitrile is formed, since the carbenium intermediate reacts preferentially with the more electronegative center of the cyanide—i.e. the nitrogen (Kornblum s rule, HSAB concept). ... [Pg.185]

Another important feature of the Nef reaction is the possible use of a CH-NO2 function as an umpoled carbonyl function. A proton at a carbon a to a nitro group is acidic, and can be abstracted by base. The resulting anionic species has a nucleophilic carbon, and can react at that position with electrophiles. In contrast the carbon center of a carbonyl group is electrophilic, and thus reactive towards nucleophiles. 1,4-Diketones 4 can for example be prepared from a-acidic nitro compounds by a Michael additionfNef reaction sequence " ... [Pg.211]

One such compound, bropirimine (112), is described as an agent which has both antineo-plastic and antiviral activity. The first step in the preparation involves formation of the dianion 108 from the half ester of malonic acid by treatment with butyllithium. Acylation of the anion with benzoyl chloride proceeds at the more nucleophilic carbon anion to give 109. This tricarbonyl compound decarboxylates on acidification to give the beta ketoester 110. Condensation with guanidine leads to the pyrimidone 111. Bromination with N-bromosuccinimide gives bropirimine (112) [24]. [Pg.117]

First, look at the reaction and identify the bonding changes that have occurred. In this case, a C—Br bond has broken and a C-C bond has formed. The formation of the C-C bond involves donation of an electron pair from the nucleophilic carbon atom of the reactant on the left to the electrophilic carbon atom ol CH Br, so we draw a curved arrow originating from the lone pair on the negatively charged C atom and pointing to the C atom of CH3Br. At the same time the C—C bond forms, the C-Br bond must break so that the octet rule is not violated. We therefore draw a second curved arrow from the C-Br bond to Br. The bromine is now a stable Br- ion. [Pg.151]

As with the reduction of carbonyl compounds discussed in the previous section, we ll defer a detailed treatment of the mechanism of Grignard reactions until Chapter 19. For the moment, it s sufficient to note that Grignard reagents act as nucleophilic carbon anions, or carbanions ( R ), and that the addition of a Grignard reagent to a carbonyl compound is analogous to the addition of hydride ion. The intermediate is an alkoxide ion, which is protonated by addition of F O"1 in a second step. [Pg.615]

O The nucleophilic carbon atom of the phosphorus ylide adds to the carbonyl group of a ketone or aldehyde to give an alkoxide ion intermediate. [Pg.721]

The E. coli enzyme accepts substitution on either cosubstrate propanal, acetone or 1-fluoro-2-propanone can replace the donor and a variety of aldehydes can replace the acceptor moiety 3. Shortcomings are the relatively low conversion rates obtained for any substrate analog and the as yet unidentified level of relative stereocontrol induced upon substitution at the nucleophilic carbon. [Pg.594]

The reaction of A-acyliminium ions with nucleophilic carbon atoms (also called cationic x-amidoalkylation) is a highly useful method for the synthesis of both nitrogen heterocycles and open-chain nitrogen compounds. A variety of carbon nucleophiles can be used, such as aromatic compounds, alkcncs, alkyncs, carbcnoids, and carbanions derived from active methylene compounds and organometallics. [Pg.803]

The replacement of an electrofugic atom or group at a nucleophilic carbon atom by a diazonium ion is called an azo coupling reaction. By far the most important type of such reactions is that with aromatic coupling components, which was discovered by Griess in 1861 (see Sec. 1.1). It is a typical electrophilic aromatic substitution, called an arylazo-de-hydrogenation in the systematic IUPAC nomenclature (IUPAC 1989c, see Sec. 1.2). [Pg.305]

In the same manner as described before, arenesulfonyl thiocyanates are able to show self-addition to conjugated systems yielding sulfones243,244. More important, however, is that reactions of selenosulfonates with unsaturated systems as well as with nucleophilic carbon have been proved. [Pg.191]


See other pages where Nucleophilic carbon is mentioned: [Pg.633]    [Pg.405]    [Pg.405]    [Pg.406]    [Pg.408]    [Pg.410]    [Pg.414]    [Pg.416]    [Pg.418]    [Pg.420]    [Pg.422]    [Pg.424]    [Pg.428]    [Pg.430]    [Pg.432]    [Pg.434]    [Pg.436]    [Pg.438]    [Pg.442]    [Pg.444]    [Pg.446]    [Pg.448]    [Pg.313]    [Pg.119]    [Pg.1259]    [Pg.134]    [Pg.134]    [Pg.191]   
See also in sourсe #XX -- [ Pg.296 , Pg.297 , Pg.298 ]




SEARCH



Carbon nucleophile

Carbon nucleophiles

© 2024 chempedia.info