Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Heterocyclic systems nucleophilic aromatic

Palladium(0)-catalyzed allylation of nucleophiles (the Tsuji-Trost reaction) is a versatile synthetic method that has gained immense popularity in recent years. Rarely applied to ambident nucleophilic aromatic heterocycles before 1991, the Tsuji-Trost reaction has been extensively used in the chemistry of these compounds since 1991. Two factors have played decisive roles in this increased interest in the Pd(0)-catalyzed allylation of such heterocyclic rings one is that, unlike other alkylation procedures, the Pd(0)-catalyzed allylation can sometimes give the product of thermodynamic control when applied to ambident nucleophiles and the second is that the Tsuji-Trost allylation has become one of the standard methods for synthesizing carbanucleosides, which are important antiviral compounds (93MI1, 93MI2). Of course, the double bond of an allylic system can be modified in different directions, thus adding versatility to the Tsuji-Trost reaction. [Pg.74]

The typical behavior of enamines has been mainly observed for compounds possessing a tertiary nitrogen atom.1 The analogous derivatives with a secondary amino group (the a,j8-unsaturated secondary amines) could, in principle, possess either the imino or the tautomeric enamine structure, but the first possibility is preferred practically without exception. In the text, some examples of their properties are quoted for the sake of comparison with those of tertiary enamines on these occasions, the group designation imines is used. Nucleophilic reactions of a limited number of aromatic heterocyclic systems are also included when they are similar to the reactions of enamines and illustrate the specific character of the enamine grouping. [Pg.148]

Intramolecular nucleophilic displacement reactions of aromatic nitro group by various nucleophiles include cydization reactions, which provide practical methods for the synthesis of a variety of heterocycles. 1 hope that the text of this review suggests a wide range of potential of this reaction in organic synthesis of various heterocycles. However, it is necessary to stress that some structural types described in this review could be prepared with similar, or even better yields by other methods. In spite of this, there are many heterocyclic systems for the synthesis of which the denitrocyclization strategy is a method of choice. [Pg.244]

Antidepressant activity is retained when the two carbon bridge in imipramine is replaced by a larger, more complex, function. Nucleophilic aromatic substitution on chloropyridine 31 by means of p-aminobenzophenone (32) gives the bicyclic intermediate 33. Reduction of the nitro group (34), followed by intramolecular Schiff base formation gives the required heterocyclic ring system 35. Alkylation of the anion from 35 with l-dimethylamino-3-chloropropane leads to tampramine 36 [8]. [Pg.203]

A wide variety of other heterocyclic ring systems can conceivably serve as the conjugated backbone in nonlinear organic molecules. We will give examples from preliminary work on two of these, the thiazole and pyrimidine heterocycle derivatives 65-72 in Table VIII. These two heterocycles were chosen because the appropriate haloderivatives are commercially available as starting materials for nucleophilic aromatic substitution. The pyrimidine derivatives are of particular interest since their absorption edges ( 400 nm) are shifted hypsochromically an additional 30 nm relative even to the pyridines. [Pg.75]

Gradually it was recognized that nucleophilic aromatic photosubstitution is a fairly general reaction (Havinga et al., 1967 Havinga and Kronenberg, 1968). It can be realized also with polycyclic and heterocyclic aromatic systems. Various solvents (water, alcohols. [Pg.226]

Halopyridines and other re-deficient nitrogen heterocycles are excellent reactants for nucleophilic aromatic substitution.112 Substitution reactions also occur readily for other heterocyclic systems, such as 2-haloquinolines and 1-haloisoquinolines, in which a potential leaving group is adjacent to a pyridine-type nitrogen. 4-Halopyridines and related heterocyclic compounds can also undergo substitution by nucleophilic addition-elimination but are somewhat less reactive. [Pg.724]

As with the other procedures for the preparation of six-membered heterocyclic systems which proceed via formation of only one ring bond there are relatively few methods which involve formation of a ring bond y to the heteroatom and which can best be classified as [6 + 0] processes rather than [4 + 2], [3 + 3], etc, processes. Of those which can be so represented, however, a number are important processes which are widely used for the synthesis of saturated, partially saturated and aromatic six-membered heterocyclic systems and their benzo derivatives. Mechanistically, the nucleophile —> electrophile approach is by far the most common, but in contrast to the reactions discussed in the previous three sections, radical cyclizations are of considerable utility here. [Pg.73]

Oxazinium and -thiazinium cations are 67r-aromatic systems which readily react with nucleophiles at C-6. Ring opening is normally followed by recyclization so that a variety of heterocyclic systems are then formed. The behaviour of the oxygen and sulfur compounds are almost identical and so, as the latter are usually prepared from the former, it is not surprising that most attention has focussed on the reactions of 1,3-oxazinium species (72S333). These versatile synthons react with ammonia, for example, to give pyrimidines, while hydrazines afford pyrazoles and hydroxylamine produces isoxazoles (Scheme 20). [Pg.1005]

The quaternary salts of selenium-nitrogen heterocycles are labile to nucleophiles and can be converted to other heterocyclic systems by ring expansion [82, 103], An example is conversion of 1,2,4-selenadiazolium trifluoromethane sulfonate (67) into 1,3,5-selenadiazine (68) (Scheme 17) [104], 2,3-Dimethyl-1-benzo-l, 3-selenazolium tetrafluoroborate is readily condensed with aromatic aldehydes to 2-styrylselenazole [105] or treated with sodium hydride to give 3-methyl-2-methylene-2,3 -dihydro-1 -benzo-1,3 -selenazole [106],... [Pg.303]

Nucleophilic Reactions of Aromatic Heterocyclic Bases Heterocyclic aromatic compounds containing a formal imine group (pyridine, quinoline, isoquinoline, and acridine) also react readily with nucleophilic reagents. A dihydro-derivative results, which is readily dehydrogenated to a new heteroaromatic system. Since the nucleophile always attacks the a-carbon atom, the reaction formally constitutes an addition to the C=N double bond. An actual localization of the C=N double bond in aromatic heterocyclic compounds is incompatible with molecular orbital theory. The attack of the nucleophilic reagent occurs at a site of low 77-electron density, which is not... [Pg.222]

It is important to recall that the reactivity pattern of phosphoies is very different from that of the related S, N, and O ring systems due to their limited aromatic character. For example, electrophilic substitution takes place only with a handful of phosphoies that have been specifically tailored via increasing the bulkiness of the P substituent (see Section 3.15.10.4, Scheme 83). In fact, electrophiles react at the phosphoms atom affording a panel of neutral and cationic CN 4 derivatives (Scheme 8). Phosphoies are also versatile synthons for the preparation of other heterocyclic systems via Diels-Alder reactions. The cycloaddition can involve the dienic moiety of the phosphole ring or can occur following a 1,5-shift of the P-substituent (Scheme 8). Finally, phosphoies can be transformed into phospholide ions, which are powerful nucleophiles that have found a variety of applications (Scheme 8). All these facets of phosphole reactivity are presented in this section. It should also be noted that CN 3 phosphoies exhibit a rich coordination chemistry toward transition metals (see Section 3.15.12.2). [Pg.1067]

The nucleophilic reaction with aromatic compounds in an inter-molecular reaction has been briefly explored in this laboratory26 with several phenols and alkoxybenzenes [Eq. (37)]. This reaction could well be extended to a number of interesting heterocyclic systems. [Pg.120]

Pyridines and related nitrogen heterocyclic (azabenzenoid) compounds Polyfluoroaromatic nitrogen heterocyclic systems are all activated, relative to the corresponding benzenoid compounds, towards nucleophilic aromatic substitution. The magnitude of this activation is illustrated by the effects of a ring nitrogen, relative to C—F at the same position, for attack by ammonia [91] (Figure 9.32). [Pg.315]

A number of transition metal complexes containing weakly basic (5-member ring) HDN-related ligands are known. The authenticated bonding modes of pyrrole (Pyr) and pyrrolyl ions (Pyl) -or their alkylated analogues- in mononuclear metal complexes are summarized in Fig. 6.1. Pyrrole is a 5-member aromatic heterocycle in which the lone pair is delocalized over the n system of the ring, and it is therefore an electron rich molecule that reacts readily with electrophiles but is not susceptible to nucleophilic attack. [Pg.154]

This chapter describes in general terms the types of reactivity found in the typical six- and five-membered aromatic heterocycles. We discuss electrophilic addition (to nitrogen) and electrophilic, nucleophilic and radical substitution chemistry. This chapter also has discussion of orf/to-quinodimethanes, in the heterocyclic context. Organometallic derivatives of heterocycles, and transition metal (especially palladium)-catalysed chemistry of heterocycles, are so important that we deal with these aspects separately, in Chapter 4. Emphasis on the typical chemistry of individual heterocyclic systems is to be found in the summary chapters (7, 10, 13, 15, 19 and 23), and a more detailed examination of typical heterocyclic reactivity and many more examples for particular heterocyclic systems are to be found in the chapters - Pyridines Reactions and Synthesis , etc. [Pg.19]


See other pages where Heterocyclic systems nucleophilic aromatic is mentioned: [Pg.188]    [Pg.166]    [Pg.1217]    [Pg.404]    [Pg.243]    [Pg.83]    [Pg.234]    [Pg.476]    [Pg.96]    [Pg.379]    [Pg.547]    [Pg.236]    [Pg.41]    [Pg.759]    [Pg.274]    [Pg.83]    [Pg.129]    [Pg.136]    [Pg.13]    [Pg.236]    [Pg.1101]    [Pg.234]    [Pg.484]    [Pg.250]    [Pg.445]    [Pg.445]    [Pg.96]    [Pg.260]    [Pg.24]    [Pg.759]   


SEARCH



Aromatic nucleophiles

Aromatic systems

Aromaticity aromatic heterocycles

Aromaticity heterocyclics

Heterocycles aromatic

Heterocycles aromatization

Heterocycles nucleophilic aromatic

Heterocyclic aromatics

Heterocyclic systems

Nucleophilic aromatic

Nucleophilic aromatic of heterocyclic systems

Nucleophilic aromatic substitution heterocyclic systems

© 2024 chempedia.info