Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nucleophile sulfides

Neutral sulfur compounds are also good nucleophiles, Sulfides and thioamides readily form salts with methyl iodide, for example. [Pg.233]

Sulfur compounds are more nucleophilic than the corresponding oxygen compounds, because sulfur is larger and more polarizable and its electrons are less tightly held in orbitals that are farther from the nucleus. Although ethers are weak nucleophiles, sulfides are relatively strong nucleophiles. Sulfides attack unhindered alkyl halides to give sulfonium salts. [Pg.643]

The scission of the chemical bond between two heteroatoms by Smij is the basis for deprotection of amines from sulfonamides. - The nascent samarium species can be employed as nucleophiles sulfide anions from RSCN for opening of epoxides, from... [Pg.328]

Although the electronic situation is completely different and the mechanistic options differ strongly too, sulfur can, very similar to silicon, operate as a control element in organic synthesis. In contrast to silicon, with sulfur it is particularly the number of the oxidation stages that lead from the soft, highly nucleophilic sulfide anion to the strong acceptor groups sulfone and sulfonate. [Pg.303]

Two efficient syntheses of strained cyclophanes indicate the synthetic potential of allyl or benzyl sulfide intermediates, in which the combined nucleophilicity and redox activity of the sulfur atom can be used. The dibenzylic sulfides from xylylene dihalides and -dithiols can be methylated with dimethoxycarbenium tetrafiuoroborate (H. Meerwein, 1960 R.F. Borch, 1968, 1969 from trimethyl orthoformate and BFj, 3 4). The sulfonium salts are deprotonated and rearrange to methyl sulfides (Stevens rearrangement). Repeated methylation and Hofmann elimination yields double bonds (R.H. Mitchell, 1974). [Pg.38]

Chlorohydrin 61 is formed by the nucleophilic addition to ethylene with PdCl2 and CuCl2[103,104]. Regioselective chlorohydroxylation of the allylic amine 62 is possible by the participation of the heteroatom to give chlorohydrin 63. Allylic sulfides behave similarly[105]. [Pg.30]

Various S-nucleophiles are allylated. Allylic acetates or carbonates react with thiols or trimethylsilyl sulfide (353) to give the allylic sulfide 354[222], Allyl sulfides are prepared by Pd-catalyzed allylic rearrangement of the dithio-carbonate 355 with elimination of COS under mild conditions. The benzyl alkyl sulfide 357 can be prepared from the dithiocarbonate 356 at 65 C[223,224], The allyl aryl sufide 359 is prepared by the reaction of an allylic carbonate with the aromatic thiol 358 by use of dppb under neutral condi-tions[225]. The O-allyl phosphoro- or phosphonothionate 360 undergoes the thiono thiolo allylic rearrangement (from 0-allyl to S -allyl rearrangement) to afford 361 and 362 at 130 C[226],... [Pg.338]

Nucleophilic reactivity of exocyclic sulfur appears in acidic medium. 2-AryI thiazolyl sulfones are obtained from the corresponding sulfides by oxidation with HjO- in HOAc at 100°C (272). The same oxidation takes place with alkyl sulfides (203. 214, 273-275) and dithiazolylsulfides (129). However, the same reaction with 2-benzylthio derivatives gives benzylal-cohol and the related A-4-thiazoline-2-thione (169). [Pg.405]

MSH (a metal hydrogen sulfide a source of the nucleophilic anion HS )... [Pg.327]

Sulfides compounds of the type RSR are prepared by nucleophilic substitution reac tions Treatment of a primary or secondary alkyl halide with an alkanethiolate ion (RS ) gives a sulfide... [Pg.685]

Sulfur IS more nucleophilic than oxygen (Section 8 7) and sulfides react with alkyl halides much faster than do ethers The products of these reactions called sulfonium salts, are also more stable than the corresponding oxygen analogs... [Pg.686]

Section 16 15 Sulfides are prepared by nucleophilic substitution (8 2) m which an alkanethiolate ion attacks an alkyl halide... [Pg.694]

Many of these reactions are reversible, and for the stronger nucleophiles they usually proceed the fastest. Typical examples are the addition of ammonia, amines, phosphines, and bisulfite. Alkaline conditions permit the addition of mercaptans, sulfides, ketones, nitroalkanes, and alcohols to acrylamide. Good examples of alcohol reactions are those involving polymeric alcohols such as poly(vinyl alcohol), cellulose, and starch. The alkaline conditions employed with these reactions result in partial hydrolysis of the amide, yielding mixed carbamojdethyl and carboxyethyl products. [Pg.133]

Reaction with Sulfur Nucleophiles, Because sulfai is highly nucleophilic, reactions of aziridines with sulfur nucleophiles generally proceed rapidly (111) and with good yields. The reaction of hydrogen sulfide [7783-06S-J with ethyleneimine yields cysteamine [60-23-1] (2-mercaptoethylamine) or bis(2-aminoethyl)sulfide [871-76-1] (2,112) depending on the molar ratio of the reactants. The use of NaHS for the synthesis of cysteamine has also been described (113). [Pg.5]

The process implications of equation 3 go beyond the weU-known properties (27—29) of NMP to faciUtate S Ar processes. The function of the aminocarboxylate is also to help solubilize the sulfur source anhydrous sodium sulfide and anhydrous sodium hydrogen sulfide are virtually insoluble in NMP (26). It also provides a necessary proton acceptor to convert thiophenol intermediates into more nucleophilic thiophenoxides. A block diagram for the Phillips low molecular weight linear PPS process is shown in Eigure 1. [Pg.442]

In another process for the synthesis of PPS, as well as other poly(arylene sulfide)s and poly(arylene oxide)s, a pentamethylcyclopentadienylmthenium(I) TT-complex is used to activate -dichlorobenzene toward displacement by a variety of nucleophilic comonomers (92). Important facets of this approach, which allow the polymerization to proceed under mild conditions, are the tremendous activation afforded by the TT-coordinated transition-metal group and the improved solubiUty of the resultant organometaUic derivative of PPS. Decomplexation of the organometaUic derivative polymers may, however, be compHcated by precipitation of the polymer after partial decomplexation. [Pg.445]

In the alcohol oxidations, the sulfonium intermediate (2, nucleophile = R2C(OH)) loses a proton and dimethyl sulfide to give the carbonyl compound (42). The most common mechanism for the decomposition of (2) is attack by a mild base to remove a proton from one of the methyl groups. Subsequent cycHc coUapse leads to the carbonyl compound and dimethyl sulfide (eq. 9) ... [Pg.108]

Certain base adducts of borane, such as triethylamine borane [1722-26-5] (C2H )2N BH, dimethyl sulfide borane [13292-87-OJ, (CH2)2S BH, and tetrahydrofuran borane [14044-65-6] C HgO BH, are more easily and safely handled than B2H and are commercially available. These compounds find wide use as reducing agents and in hydroboration reactions (57). A wide variety of borane reducing agents and hydroborating agents is available from Aldrich Chemical Co., Milwaukee, Wisconsin. Base displacement reactions can be used to convert one adduct to another. The relative stabiUties of BH adducts as a function of Group 15 and 16 donor atoms are P > N and S > O. This order has sparked controversy because the trend opposes the normal order estabUshed by BF. In the case of anionic nucleophiles, base displacement leads to ionic hydroborate adducts (eqs. 20,21). [Pg.236]

Methyl bromide slowly hydrolyzes in water, forming methanol and hydrobromic acid. The bromine atom of methyl bromide is an excellent leaving group in nucleophilic substitution reactions and is displaced by a variety of nucleophiles. Thus methyl bromide is useful in a variety of methylation reactions, such as the syntheses of ethers, sulfides, esters, and amines. Tertiary amines are methylated by methyl bromide to form quaternary ammonium bromides, some of which are active as microbicides. [Pg.294]

Carbanions in the form of ylides also add to azirines. For example, treatment of 1-azirine (227) with dimethylsulfonium methylide gives 1-azabicyclobutane (229) in good yield (72JA2758). The addition of the methylene group occurs by initial nucleophilic attack by the ylide to give intermediate (228) which cyclizes with expulsion of dimethyl sulfide. [Pg.71]

Electrophilic attack on the sulfur atom of thiiranes by alkyl halides does not give thiiranium salts but rather products derived from attack of the halide ion on the intermediate cyclic salt (B-81MI50602). Treatment of a s-2,3-dimethylthiirane with methyl iodide yields cis-2-butene by two possible mechanisms (Scheme 31). A stereoselective isomerization of alkenes is accomplished by conversion to a thiirane of opposite stereochemistry followed by desulfurization by methyl iodide (75TL2709). Treatment of thiiranes with alkyl chlorides and bromides gives 2-chloro- or 2-bromo-ethyl sulfides (Scheme 32). Intramolecular alkylation of the sulfur atom of a thiirane may occur if the geometry is favorable the intermediate sulfonium ions are unstable to nucleophilic attack and rearrangement may occur (Scheme 33). [Pg.147]


See other pages where Nucleophile sulfides is mentioned: [Pg.261]    [Pg.598]    [Pg.539]    [Pg.38]    [Pg.598]    [Pg.598]    [Pg.193]    [Pg.980]    [Pg.261]    [Pg.598]    [Pg.539]    [Pg.38]    [Pg.598]    [Pg.598]    [Pg.193]    [Pg.980]    [Pg.235]    [Pg.261]    [Pg.346]    [Pg.328]    [Pg.143]    [Pg.493]    [Pg.363]    [Pg.108]    [Pg.32]    [Pg.186]    [Pg.25]    [Pg.26]    [Pg.37]    [Pg.291]    [Pg.42]    [Pg.161]    [Pg.139]    [Pg.149]   
See also in sourсe #XX -- [ Pg.84 ]




SEARCH



Hydrogen sulfide as a nucleophile

Sulfides nucleophile oxidation

© 2024 chempedia.info