Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nuclear component surfaces

Nuclear component of the stopping power SPR Surface plasma resonance... [Pg.288]

In our discussion the usual Born-Oppenheimer (BO) approximation will be employed. This means that we assume a standard partition of the effective Hamiltonian into an electronic and a nuclear part, as well as the factorization of the solute wavefunction into an electronic and a nuclear component. As will be clear soon, the corresponding electronic problem is the main source of specificities of QM continuum models, due to the nonlinearity of the effective electronic Hamiltonian of the solute. The QM nuclear problem, whose solution gives information on solvent effects on the nuclear structure (geometry) and properties, has less specific aspects, with respect the case of the isolated molecules. In fact, once the proper potential energy surfaces are obtained from the solution of the electronic problem, such a problem can be solved using the standard methods and approximations (mechanical harmonicity, and anharmonicity of various order) used for isolated molecules. The QM nuclear problem is mainly connected with the vibrational properties of the nuclei and the corresponding spectroscopic observables, and it will be considered in more detail in the contributions in the book dedicated to the vibrational spectroscopies (IR/Raman). This contribution will be focused on the QM electronic problem. [Pg.82]

In service inspections of French nuclear Pressure Water Reactor (PWR) vessels are carried out automatically in complete immersion from the inside by means of ultrasonic focused probes working in the pulse echo mode. Concern has been expressed about the capabilities of performing non destructive evaluation of the Outer Surface Defects (OSD), i.e. defects located in the vicinity of the outer surface of the inspected components. OSD are insonified by both a "direct" field that passes through the inner surface (water/steel) of the component containing the defect and a "secondary" field reflected from the outer surface. Consequently, the Bscan images, containing the signatures of such defects, are complicated and their interpretation is a difficult task. [Pg.171]

Finally, we consider the complete molecular Hamiltonian which contains not only temis depending on the electron spin, but also temis depending on the nuclear spin / (see chapter 7 of [1]). This Hamiltonian conmiutes with the components of Pgiven in (equation Al.4,1). The diagonalization of the matrix representation of the complete molecular Hamiltonian proceeds as described in section Al.4,1.1. The theory of rotational synnnetry is an extensive subject and we have only scratched the surface here. A relatively new book, which is concemed with molecules, is by Zare [6] (see [7] for the solutions to all the problems in [6] and a list of the errors). This book describes, for example, the method for obtaining the fimctioiis ... [Pg.170]

There are other important properties tliat can be measured from microwave and radiofrequency spectra of complexes. In particular, tire dipole moments and nuclear quadmpole coupling constants of complexes may contain useful infonnation on tire stmcture or potential energy surface. This is most easily seen in tire case of tire dipole moment. The dipole moment of tire complex is a vector, which may have components along all tire principal inertial axes. [Pg.2442]

V is the derivative with respect to R.) We stress that in this formalism, I and J denote the complete adiabatic electronic state, and not a component thereof. Both /) and y) contain the nuclear coordinates, designated by R, as parameters. The above line integral was used and elaborated in calculations of nuclear dynamics on potential surfaces by several authors [273,283,288-301]. (For an extended discussion of this and related matters the reviews of Sidis [48] and Pacher et al. [49] are especially infonnative.)... [Pg.138]

Similar to the case without consideration of the GP effect, the nuclear probability densities of Ai and A2 symmetries have threefold symmetry, while each component of E symmetry has twofold symmetry with respect to the line defined by (3 = 0. However, the nuclear probability density for the lowest E state has a higher symmetry, being cylindrical with an empty core. This is easyly understand since there is no potential barrier for pseudorotation in the upper sheet. Thus, the nuclear wave function can move freely all the way around the conical intersection. Note that the nuclear probability density vanishes at the conical intersection in the single-surface calculations as first noted by Mead [76] and generally proved by Varandas and Xu [77]. The nuclear probability density of the lowest state of Aj (A2) locates at regions where the lower sheet of the potential energy surface has A2 (Ai) symmetry in 5s. Note also that the Ai levels are raised up, and the A2 levels lowered down, while the order of the E levels has been altered by consideration of the GP effect. Such behavior is similar to that encountered for the trough states [11]. [Pg.598]

Nuclear Applications. Powder metallurgy is used in the fabrication of fuel elements as well as control, shielding, moderator, and other components of nuclear-power reactors (63) (see Nuclearreactors). The materials for fuel, moderator, and control parts of a reactor are thermodynamically unstable if heated to melting temperatures. These same materials are stable under P/M process conditions. It is possible, for example, to incorporate uranium or ceramic compounds in a metallic matrix, or to produce parts that are similar in the size and shape desired without effecting drastic changes in either the stmcture or surface conditions. OnlyHttle post-sintering treatment is necessary. [Pg.192]

Nuclear wastes are classified according to the level of radioactivity. Low level wastes (LLW) from reactors arise primarily from the cooling water, either because of leakage from fuel or activation of impurities by neutron absorption. Most LLW will be disposed of in near-surface faciHties at various locations around the United States. Mixed wastes are those having both a ha2ardous and a radioactive component. Transuranic (TRU) waste containing plutonium comes from chemical processes related to nuclear weapons production. These are to be placed in underground salt deposits in New Mexico (see... [Pg.181]

Pyrolytic graphite was first produced in the late 1800s for lamp filaments. Today, it is produced in massive shapes, used for missile components, rocket nozzles, and aircraft brakes for advanced high performance aircraft. Pyrolytic graphite coated on surfaces or infiltrated into porous materials is also used in other appHcations, such as nuclear fuel particles, prosthetic devices, and high temperature thermal insulators. [Pg.527]

The majority of trichloroethylene present on soil surfaces will volatilize to the atmosphere or leach into the subsurface. Once trichloroethylene leaches into the soil, it appears not to become chemically transformed or undergo covalent bonding with soil components. When trichloroethylene was absorbed onto kaolinite and bentonite, the nuclear magnetic resonance (NMR) spectra showed no evidence of chemical reactions (Jurkiewicz and Maciel 1995). Because trichloroethylene is a dense nonaqueous phase liquid, it can move through the imsaturated zone into the saturated zone where it can displace soil pore water (Wershaw et al. 1994). [Pg.213]

Figure 26.33 shows the gravel filter and cobblestone components of the biotic barrier and their placement in the landfill system. The proposed 1-m thickness for a biotic barrier should effectively prevent penetration by all but the smallest insects. Note that the biotic barrier also serves as the surface water collection/drainage layer. Biotic barriers used in nuclear caps may be up to 14 ft thick... [Pg.1143]


See other pages where Nuclear component surfaces is mentioned: [Pg.283]    [Pg.372]    [Pg.379]    [Pg.386]    [Pg.384]    [Pg.6]    [Pg.25]    [Pg.40]    [Pg.98]    [Pg.477]    [Pg.481]    [Pg.575]    [Pg.597]    [Pg.771]    [Pg.124]    [Pg.129]    [Pg.400]    [Pg.1114]    [Pg.338]    [Pg.252]    [Pg.189]    [Pg.480]    [Pg.739]    [Pg.154]    [Pg.467]    [Pg.146]    [Pg.445]    [Pg.160]    [Pg.162]    [Pg.63]    [Pg.144]    [Pg.202]    [Pg.585]    [Pg.589]    [Pg.683]    [Pg.705]   


SEARCH



Component nuclear

Nuclear surface

Surface components

© 2024 chempedia.info