Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nonyl alcohol from n-heptyl bromide

This preparation is an example of the use of di-M-butyl ether as a solvent in the Grignard reaction. The advantages are it is comparatively inexpensive, it can be handled without excessive loss due to evaporation, simple distillation gives an ether free from moisture and alcohol, and the vapour does not form explosive mixtures with air. n-Butyl ether cannot, of course, be employed when the boiling point of the neutral reaction product is close to 140°. [Pg.254]

Prepare a Grignard reagent from 24 -5 g. of magnesium turnings, 179 g. (157 ml.) of n-heptyl bromide (Section 111,37), and 300 ml. of di-n-butyl ether (1). Cool the solution to 0° and, with vigorous stirring, add an excess of ethylene oxide. Maintain the temperature at 0° for 1 hour after the ethylene oxide has been introduced, then allow the temperature to rise to 40° and maintain the mixture at this temperature for 1 hour. Finally heat the mixture on a water bath for 2 hours. Decompose the addition product and isolate the alcohol according to the procedure for n-hexyl alcohol (Section 111,18) the addition of benzene is unnecessary. Collect the n-nonyl alcohol at 95-100°/12 mm. The yield is 95 g. [Pg.254]

Place a mixture of 114 g. (140 ml.) of methyl -amyl ketone (2-hepta-none) (1), 300 ml. of rectified spirit (95 per cent, ethyl alcohol) and 100 ml. of water (2) in a 1500 ml. three-necked fiask or in a 1500 ml. round-bottomed fiask provided with a two-way addition tube (Fig. 11,13, 9). Attach an efficient double surface condenser to the fiask and close the [Pg.254]

Use the apparatus detailed in Section 111,20. Dissolve 100 g. (123 ml.) of methyl n-butyl ketone (2-hexanone) (Section 111,152) in 750 ml. of ether and add 150 ml. of water. Introduce 69 g. of clean sodium in the form of wire (or small pieces) as rapidly as possible the reaction must be kept under control and, if necessary, the flask must be cooled in ice or in running water. When all the sodium has reacted, separate the ethereal layer, wash it with 25 ml. of dilute hydrochloric acid (1 1), then with water, dry with anhydrous potassium carbonate or with anhydrous calcium sulphate, and distil through a fractionating column. Collect the fraction of b.p. 136-138°. The yield of methyl n-butyl carbinol (2-hexanol) is 97 g. [Pg.255]

Place 35 ml. of water in the separatory funnel and run it into the vigoroiisly stirred reaction mixture at such a rate that rapid refluxing occurs. Follow this by a cold solution of 15-5 ml. of concentrated sulphuric acid in 135 ml. of water. Two practically clear layers will now be present in the flask. Decant as much as possible of the ethereal layer A) into a 500 ml. round-bottomed flask. Transfer the remainder, including the aqueous layer, into a separatory funnel wash the residual solid with two 10 ml. portions of ether and combine these washings with the liquid in the separatory funnel. Separate the ethereal portion and combine it with (A). Distil off the ether through an efficient fraction- [Pg.256]


See other pages where Nonyl alcohol from n-heptyl bromide is mentioned: [Pg.254]    [Pg.254]    [Pg.1203]    [Pg.254]    [Pg.254]    [Pg.1203]    [Pg.254]    [Pg.254]    [Pg.254]    [Pg.1203]    [Pg.254]    [Pg.254]    [Pg.1203]    [Pg.254]   


SEARCH



Bromides alcohols

Bromides from alcohols

Heptyl alcohol

Heptyl bromide

Heptylate

N-Alcohol

N-Heptyl alcohol

N-Nonyl alcohol

N-heptylate

Nonyl alcohol

© 2024 chempedia.info