Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nonlinear optics , electrically active

Nonlinear Optical Devices. A transparent, optically active, sol—gel-derived organic—inorganic glass has been synthesized (68). This hybrid consists of a 2,4-dinitroaminophenylpropyl-triethoxysilane covalently bound to a siUcon alkoxide-derived siUca network. This hybrid exhibits a strong electric field-induced second harmonic signal and showed no signs of crystallization. [Pg.331]

The linear polarizability, a, describes the first-order response of the dipole moment with respect to external electric fields. The polarizability of a solute can be related to the dielectric constant of the solution through Debye s equation and molar refractivity through the Clausius-Mosotti equation [1], Together with the dipole moment, a dominates the intermolecular forces such as the van der Waals interactions, while its variations upon vibration determine the Raman activities. Although a corresponds to the linear response of the dipole moment, it is the first quantity of interest in nonlinear optics (NLO) and particularly for the deduction of stracture-property relationships and for the design of new... [Pg.95]

It is important to note that the coefficients fp, gp, and hs are always nonvanishing, for both achiral and chiral isotropic films. On the other hand, fs, gs, and hp can only be nonvanishing if the isotropic film is chiral (nonracemic) because they completely depend on the chiral susceptibility components. Note that gs is always equal to zero within the electric dipole approximation. The sign of the chiral expansion coefficients changes between enantiomers, while that of the achiral expansion coefficients stays the same. Experimental determination of all expansion coefficients fully characterizes the nonlinearity and nonlinear optical activity of the sample. Once all expansion coefficients are... [Pg.534]

We have not failed to recognize that appropriately designed (6,0) carbon and C/B/N nanotubes may display considerably enhanced nonlinear optical activity. This term refers to the response of the dipole moment of a molecule (or the polarization of bulk material) to the oscillating electric field of electromagnetic radiation.82 85 The component of the dipole moment along an axis i in the presence of an electric field e can be represented by a Taylor series ... [Pg.498]

Van der Vorst CPJM and Picken SB, "Electric Field Poling of Nonlinear Optical Side Chain Polymers", in Shibaev VP (Ed.) "Polymers as Electro-optical and Photo-optical Active Media", Springer Verlag, Berlin, 1996, Chap. 5 "Electric Field Poling of Acceptor-Donor Molecules", J Opt Soc Am B 7 (1990) 320. [Pg.354]

In the simplest case of a donor-acceptor (D-A) molecule, the nonlinear optical activity arises from the electric-field-induced mixing of electronic states such as D-A and D+-A . This makes the response (polarizability) of the molecule different according to the sense of the electric field, and a second-order hyperpolarizability fi coefficient) is observed. If D and A are connected by some bridge, its role in promoting the electronic interaction will be quite similar to the bridge role in mixed-valence complexes. Metal complexes can play the role of donor or acceptor groups. Recent examples have been described with ferrocene or ruthenium(pentaammine) groups [48], but they are either monometallic or too short to be considered in this review. [Pg.3198]

Nonlinear optical activity phenomena arise at third-order and include intensity dependent contributions to optical rotation and circular dichroism, as well as a coherent form of Raman optical activity. The third-order observables are - like their linear analogs - pseudoscalars (scalars which change sign under parity) and require electric-dipole as well as magnetic-dipole transitions. Nonlinear optical activity is circular differential. [Pg.360]

In order to describe linear and nonlinear optical activity, it becomes necessary to consider susceptibilities other than the electric-dipole susceptibilities in Eq. (1). We will only briefly discuss such nonlocal terms. [Pg.361]

Symmetry arguments show that parity-odd, time-even molecular properties which have a non-vanishing isotropic part underlie chirality specific experiments in liquids. In linear optics it is the isotropic part of the optical rotation tensor, G, that gives rise to optical rotation and vibrational optical activity. Pseudoscalars can also arise in nonlinear optics. Similar to tlie optical rotation tensor, the odd-order susceptibilities require magnetic-dipole (electric-quadrupole) transitions to be chirally sensitive. [Pg.378]

The theoretical framework developed above is valid in the electric dipole approximation. In this context, it is assumed that the nonlinear polarization PfL(2 >) is reduced to the electric dipole contribution as given in Eq. (1). This assumption is only valid if the surface susceptibility tensor x (2 > >, a>) is large enough to dwarf the contribution from higher orders of the multipole expansion like the electric quadrupole contribution and is therefore the simplest approximation for the nonlinear polarization. At pure solvent interfaces, this may not be the case, since the nonlinear optical activity of solvent molecules like water, 1,2-dichloroethane (DCE), alcohols, or alkanes is rather low. The magnitude of the molecular hyperpolarizability of water, measured by DC electric field induced second harmonic... [Pg.126]


See other pages where Nonlinear optics , electrically active is mentioned: [Pg.2521]    [Pg.2546]    [Pg.1999]    [Pg.134]    [Pg.139]    [Pg.149]    [Pg.520]    [Pg.522]    [Pg.526]    [Pg.529]    [Pg.531]    [Pg.532]    [Pg.109]    [Pg.109]    [Pg.282]    [Pg.313]    [Pg.388]    [Pg.559]    [Pg.393]    [Pg.5]    [Pg.10]    [Pg.328]    [Pg.332]    [Pg.143]    [Pg.143]    [Pg.101]    [Pg.381]    [Pg.19]    [Pg.98]    [Pg.123]    [Pg.52]    [Pg.337]    [Pg.359]    [Pg.359]    [Pg.384]    [Pg.139]    [Pg.136]    [Pg.210]   


SEARCH



Electric activation

Electric optical

Electrical activation

Electrical activity

Electrically active polymers nonlinear optics

Nonlinear activation

Nonlinear activity

Nonlinear optics optical activity

Nonlinearities activities

© 2024 chempedia.info