Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nonequilibrium thermodynamics transport processes

Demirel, Y., 2002, Nonequilibrium Thermodynamics Transport and Rate Processes in Physical and Biological Systems, Elsevier, Amsterdam, pp. 186-205. [Pg.149]

Nonequilibrium thermodynamics transport and rate processes in physical, chemical and biological systems. -2nd ed. [Pg.735]

He is the author of two other books. Nonequilibrium Thermodynamics (1962) and Vector Analysis in Chemistry (1974), and has published research articles on the theory of optical rotation, statistical mechanical theory of transport processes, nonequilibrium thermodynamics, molecular quantum mechanics, theory of liquids, intermolecular forces, and surface phenomena. [Pg.354]

The fundamental question in transport theory is Can one describe processes in nonequilibrium systems with the help of (local) thermodynamic functions of state (thermodynamic variables) This question can only be checked experimentally. On an atomic level, statistical mechanics is the appropriate theory. Since the entropy, 5, is the characteristic function for the formulation of equilibria (in a closed system), the deviation, SS, from the equilibrium value, S0, is the function which we need to use for the description of non-equilibria. Since we are interested in processes (i.e., changes in a system over time), the entropy production rate a = SS is the relevant function in irreversible thermodynamics. Irreversible processes involve linear reactions (rates 55) as well as nonlinear ones. We will be mainly concerned with processes that occur near equilibrium and so we can linearize the kinetic equations. The early development of this theory was mainly due to the Norwegian Lars Onsager. Let us regard the entropy S(a,/3,. ..) as a function of the (extensive) state variables a,/ ,. .. .which are either constant (fi,.. .) or can be controlled and measured (a). In terms of the entropy production rate, we have (9a/0f=a)... [Pg.63]

All the work just mentioned is rather empirical and there is no general theory of chemical reactions under plasma conditions. The reason for this is, quite obviously, that the ordinary theoretical tools of the chemist, — chemical thermodynamics and Arrhenius-type kinetics - are only applicable to systems near thermodynamic and thermal equilibrium respectively. However, the plasma is far away from thermodynamic equilibrium, and the energy distribution is quite different from the Boltzmann distribution. As a consequence, the chemical reactions can be theoretically considered only as a multichannel transport process between various energy levels of educts and products with a nonequilibrium population20,21. Such a treatment is extremely complicated and - because of the lack of data on the rate constants of elementary processes — is only very rarely feasible at all. Recent calculations of discharge parameters of molecular gas lasers may be recalled as an illustration of the theoretical and the experimental labor required in such a treatment22,23. ... [Pg.140]

Fortunately, several simplifications can be made (Nye, 1957). Transport phenomena, for example, are processes whereby systems transition from a state of nonequilibrium to a state of equilibrium. Thus, they fall within the realm of irreversible or nonequilibrium thermodynamics. Onsager s theorem, which is central to nonequilibrium thermodynamics, dictates that as a consequence of time-reversible symmetry, the off-diagonal elements of a transport property tensor are symmetrical (i.e., xy = X/,-). This is known as a reciprocal relation. The Norwegian physical chemist Lars Onsager (1903-1976) was awarded the 1968 Nobel Prize in Chemistry for reciprocal relations. Thus, the tensor above can be rewritten as... [Pg.5]

Other examples of transport properties include electrical and thermal conductivity. Transport of a physical quantity along a determined direction due to a gradient is an irreversible process by which a system transitions from a nonequilibrium state to an equilibrium state (e.g., compositional or thermal homogeneity). Therefore, it is outside the realm of equilibrium thermodynamics. (For this reason, equilibrium thermodynamics is more appropriately termed thermostatics.) Transport processes must be studied by irreversible thermodynamics. [Pg.84]

States away from global equilibrium are called the thermodynamic branch (Figure 2.2). Systems not far from global equilibrium may be extrapolated around equilibrium state. For systems near equilibrium, linear phenomenological equations may represent the transport and rate processes. The linear nonequilibrium thermodynamics theory determines the dissipation function or the rate of entropy production to describe such systems in the vicinity of equilibrium. This theory is particularly useful to describe coupled phenomena, and quantify the level of coupling in physical, chemical, and biological systems without detailed process mechanisms. [Pg.54]

The reversibility of molecular behavior gives rise to a kind of symmetry in which the transport processes are coupled to each other. Although a thermodynamic system as a whole may not be in equilibrium, the local states may be in local thermodynamic equilibrium all intensive thermodynamic variables become functions of position and time. The definition of energy and entropy in nonequilibrium systems can be expressed in terms of energy and entropy densities u(T,Nk) and s(T,Nk), which are the functions of the temperature field T(x) and the mole number density Y(x) these densities can be measured. The total energy and entropy of the system is obtained by the following integrations... [Pg.98]

The phenomenological coefficients are important in defining the coupled phenomena. For example, the coupled processes of heat and mass transport give rise to the Soret effect (which is the mass diffusion due to heat transfer), and the Dufour effect (which is the heat transport due to mass diffusion). We can identify the cross coefficients of the coupling between the mass diffusion (vectorial process) and chemical reaction (scalar process) in an anisotropic membrane wall. Therefore, the linear nonequilibrium thermodynamics theory provides a unifying approach to examining various processes usually studied under separate disciplines. [Pg.125]

The formulation of linear nonequilibrium thermodynamics is based on the combination of the first and second laws of thermodynamics with the balance equations including the entropy balance. These equations allow additional effects and processes to be taken into account. The linear nonequilibrium thermodynamics approach is widely recognized as a useful phenomenological theory that describes the coupled transport without the need for the examination of the detailed coupling mechanisms of complex processes. [Pg.127]

Stucki (1980, 1984) applied the linear nonequilibrium thermodynamics theory to oxidative phosphorylation within the practical range of phosphate potentials. The nonvanishing cross-phenomenological coefficients Ly(i v /) reflect the coupling effect. This approach enables one to assess the oxidative phosphorylation with H+pumps as a process driven by respiration by assuming the steady-state transport of ions. A set of representative linear phenomenological relations are given by... [Pg.568]

The stability of transport and rate systems is studied either by nonequilibrium thermodynamics or by conventional rate theory. In the latter, the analysis is based on Poincare s variational equations and Lyapunov functions. We may investigate the stability of a steady state by analyzing the response of a reaction system to small disturbances around the stationary state variables. The disturbed quantities are replaced by linear combinations of their undisturbed stationary values. In nonequilibrium thermodynamics theory, the stability of stationary states is associated with Progogine s principle of minimum entropy production. Stable states are characterized by the lowest value of the entropy production in irreversible processes. The applicability of Prigogine s principle of minimum entropy production is restricted to stationary states close to global thermodynamic equilibrium. It is not applicable to the stability of continuous reaction systems involving stable and unstable steady states far from global equilibrium. The steady-state deviation of entropy production serves as a Lyapunov function. [Pg.632]

Extended nonequilibrium thermodynamics is not based on the local equilibrium hypothesis, and uses the conserved variables and nonconserved dissipative fluxes as the independent variables to establish evolution equations for the dissipative fluxes satisfying the second law of thermodynamics. For conservation laws in hydrodynamic systems, the independent variables are the mass density, p, velocity, v, and specific internal energy, u, while the nonconserved variables are the heat flux, shear and bulk viscous pressure, diffusion flux, and electrical flux. For the generalized entropy with the properties of additivity and convex function considered, extended nonequilibrium thermodynamics formulations provide a more complete formulation of transport and rate processes beyond local equilibrium. The formulations can relate microscopic phenomena to a macroscopic thermodynamic interpretation by deriving the generalized transport laws expressed in terms of the generalized frequency and wave-vector-dependent transport coefficients. [Pg.681]

Rubi and Perez-Madrid (2001) derived some kinetic equations of the Fokker-Planck type for polymer solutions. These equations are based on the fact that processes leading to variations in the conformation of the macromolecules can be described by nonequilibrium thermodynamics. The extension of this approach to the mesoscopic level is called the mesoscopic nonequilibrium thermodynamics, and applied to transport and relaxation phenomena and polymer solutions (Santamaria-Holek and Rubi, 2003). [Pg.686]

The theory treating near-equilibrium phenomena is called the linear nonequilibrium thermodynamics. It is based on the local equilibrium assumption in the system and phenomenological equations that linearly relate forces and flows of the processes of interest. Application of classical thermodynamics to nonequilibrium systems is valid for systems not too far from equilibrium. This condition does not prove excessively restrictive as many systems and phenomena can be found within the vicinity of equilibrium. Therefore equations for property changes between equilibrium states, such as the Gibbs relationship, can be utilized to express the entropy generation in nonequilibrium systems in terms of variables that are used in the transport and rate processes. The second law analysis determines the thermodynamic optimality of a physical process by determining the rate of entropy generation due to the irreversible process in the system for a required task. [Pg.750]

This book introduces the theory of nonequilibrium thermodynamics and its use in transport and rate processes of physical and biological systems. The first chapter briefly presents the equilibrium thermodynamics. In the second chapter, the transport and rate processes have been summarized. The rest of the book covers the theory of nonequilibrium thermodynamics, dissipation function, and various applications based on linear nonequilibrium thermodynamics. Extended nonequilibrium thermodynamics is briefly covered. All the parts of the book can be used for senior- and graduate-level teaching in engineering and science. [Pg.750]

Although our own research has outlined a complete new theoretical concept, there is still a great need to invest further research into the fundamentals of blend technology, such as dispersion, interfacial phenomena, conductivity breakthrough at the critical concentration, electron transport phenomena in blends, and others. It is not the purpose of this section to review these aspects in greater depth than in Section 1.1 and Section 1.2. In the context of this handbook, it should be sufficient to summarize the basis of any successful OM (PAni) blend with another (insulating and moldable or otherwise process-able) polymer is a dispersion of OM (here PAni, which is present as the dispersed phase) and a complex dissipative structure formation under nonequilibrium thermodynamic conditions (for an overview, see Ref [50] for the thermodynamic theory itself, see Ref [15], for detailed discussions, cf Refs. [63,64]). Dispersion itself leads to the drastic insulator-to-metal transition by changing the crystal structure in the nanoparticles (see Section 1.1). [Pg.1071]


See other pages where Nonequilibrium thermodynamics transport processes is mentioned: [Pg.14]    [Pg.349]    [Pg.10]    [Pg.159]    [Pg.278]    [Pg.92]    [Pg.97]    [Pg.98]    [Pg.125]    [Pg.155]    [Pg.176]    [Pg.453]    [Pg.470]    [Pg.541]    [Pg.541]    [Pg.599]    [Pg.631]    [Pg.748]    [Pg.748]    [Pg.749]    [Pg.750]    [Pg.750]    [Pg.318]    [Pg.438]    [Pg.14]   


SEARCH



Nonequilibrium

Nonequilibrium process thermodynamics

Nonequilibrium processes

Nonequilibrium thermodynamics

Transport processes

Transportation processes

© 2024 chempedia.info