Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Noble gases isolation

So far, most of this discussion applies to the generation and study of radical cations. How about radical anions These species are more difficult to generate in isolated form in cryogenic matrices because in solvents that do not significantly stabilize charged species (such as noble gases), isolated radical anions are prone to suffer detachment of the loosely bound extra electron, either spontanously or under the impact of low-energy radiation. This situation contrasts with that encountered in solvents such as methyltetrahydrofuran, which can be routinely... [Pg.822]

How are noble gases isolated from the fractions of liquid air ... [Pg.77]

The molecular constants that describe the stnicture of a molecule can be measured using many optical teclmiques described in section A3.5.1 as long as the resolution is sufficient to separate the rovibrational states [110. 111 and 112]. Absorption spectroscopy is difficult with ions in the gas phase, hence many ion species have been first studied by matrix isolation methods [113], in which the IR spectrum is observed for ions trapped witliin a frozen noble gas on a liquid-helium cooled surface. The measured frequencies may be shifted as much as 1 % from gas phase values because of the weak interaction witli the matrix. [Pg.813]

The isolation and identification of 4 radioactive elements in minute amounts took place at the turn of the century, and in each case the insight provided by the periodic classification into the predicted chemical properties of these elements proved invaluable. Marie Curie identified polonium in 1898 and, later in the same year working with Pierre Curie, isolated radium. Actinium followed in 1899 (A. Debierne) and the heaviest noble gas, radon, in 1900 (F. E. Dorn). Details will be found in later chapters which also recount the discoveries made in the present century of protactinium (O. Hahn and Lise Meitner, 1917), hafnium (D. Coster and G. von Hevesey, 1923), rhenium (W. Noddack, Ida Tacke and O. Berg, 1925), technetium (C. Perrier and E. Segre, 1937), francium (Marguerite Percy, 1939) and promethium (J. A. Marinsky, L. E. Glendenin and C. D. Coryell, 1945). [Pg.30]

Until about 40 years ago, these elements were referred to as "inert gases" they were believed to be entirely unreactive toward other substances. In 1962 Neil Bartlett, a 29-year-old chemist at the University of British Columbia, shook up the world of chemistry by preparing the first noble-gas compound. In the course of his research on platinum-fluorine compounds, he isolated a reddish solid that he showed to be 02+(PtFB-). Bartlett realized that the ionization energy of Xe (1170 kJ/mol) is virtually identical to that of the 02 molecule (1165 kJ/mol). This encouraged him to attempt to make the analogous compound XePtF6. His success opened up a new era in noble-gas chemistry. [Pg.190]

Techniques other than UV-visible spectroscopy have been used in matrix-isolation studies of Ag see, for example, some early ESR studies by Kasai and McLeod 56). The fluorescence spectra of Ag atoms isolated in noble-gas matrices have been recorded (76,147), and found to show large Stokes shifts when optically excited via a Si j — atomic transition which is threefold split in the matrix by spin-orbit and vibronic interactions. The large Stokes shifts may be explained in terms of an excited state silver atom-matrix cage complex in this... [Pg.95]

In 1894, the Scottish chemist William Ramsay removed nitrogen and oxygen from air through chemical reactions. From the residue, Ramsay Isolated argon, the first noble gas to be discovered. A year after discovering argon, Ramsay obtained an unreactive gas from uranium-containing mineral samples. The gas exhibited the same spectral lines that had been observed in the solar eclipse of 1868. After helium was shown to exist on Earth, this new element was studied and characterized. [Pg.461]

Phenylisosilacyanide is produced either by irradiation of triazidophenyl-silane in matrix isolation or by pyrolysis followed by trapping in noble gas matrix (Eq. 3). The reaction with /-butanol leads to the expected product6 ... [Pg.161]

The application of matrix isolation to organometallic chemistry has been extensively described elsewhere (4,5,6,7). Two methods have generally been employed. In the first, based on G.C. Pimentel s original development, the solid matrix environment is a frozen noble gas - usually Ar - at 10-20K and the unstable fragment is generated either by photolysis of a parent molecule already trapped in the matrix, or by cocondensation from the gas phase. In the... [Pg.114]

Chapter 18 by C. Chiappe focuses on the mechanism of bromination of alkenes, exploring the role of solvent on the formation of cyclic bromonium ion versus P-bromocarbemium ion, as key intermediates. In Chapter 19, H. P. A. Mercier et al. discuss the utility of a novel class of noble-gas onium salts as oxidants for generation and isolation of various trihalomethyl cation salts. [Pg.10]

The lightest noble gas, helium, had in fact been discovered in 1868 -but only on the sun (see pages 73-4). So little was known about it that Mendeleyev could see no way to include it. Helium was not found on Earth until 1895, when William Ramsay and Morris Travers in London isolated it from uranium minerals. Two Swedish chemists in Uppsala found it in much the same source at the same time. [Pg.154]

Let us close with a reveahng bit of doggerel, illustrating how the concept of the atom was changing before chemists veiy eyes. The author is eminent British chemist William Ramsay, best known for his role in the discovery and isolation of most of the noble gas elements, for which he was awarded the 1904 Nobel Prize in Chemistry. He wrote these verses for his 1902 lab dinner. [Pg.85]

Matrix isolation studies usually permit spectroscopic observation of the species M(CO), M(CO)2,. M(CO) , the coordinatively saturated molecule. In some early studies, species thought to be simple unsaturated carbonyls were in fact carbonyls of metal clusters Mx(CO) a very low concentration of metal in the matrix (e.g., I mol in 104 mol noble gas) has to be used to prevent clustering. All the partially coordinated carbonyls are only matrix species, that is, they only exist when completely isolated from other molecules of their own kind or from CO. The coordinately saturated carbonyls are of more interest in the context of this review. The following new molecules have been reported Au(CO)2 (84a) Ag(CO)3, Cu2(CO)6 (46, 87) Pd(CO)4 (22), Pt(CO)4 (69) Rh2(CO)g, Ir2(CO)g (37) M(CO)6[M = Pr, Nd, Gd, Ho, Yb (100), Ta (24), U (117)]. The Cu, Pd, Pt, Rh, and Ir carbonyls can be obtained by condensing the metal vapors with pure CO at 40 K and then pumping off excess CO to leave a film of the carbonyl. The Cu, Pd, and Pt carbonyls decompose under vacuum temperatures above -100°C, and the Rh and Ir carbonyls dimerize with loss of CO to give M4(CO)12 above -60°C. The gold and silver carbonyls are not stable outside matrix isolation conditions. Unfortunately, the literature is presently unclear about the stability of the Ta and lanthanide hexacarbonyls outside a matrix. [Pg.64]

Consider tlie mutual approach of two noble gas atoms. At infinite separation, there is no interaction between them, and this defines die zero of potential energy. The isolated atoms are spherically symmetric, lacking any electric multipole moments. In a classical world (ignoring the chemically irrelevant gravitational interaction) there is no attractive force between them as they approach one another. When tliere are no dissipative forces, the relationship between force F in a given coordinate direction q and potential energy U is... [Pg.27]

The noble gas hydride ions should have a bond order of one and tbe diatomic noble gas ions should have a bond order of one-half. Neither type cun be isolated in the form of salts of the type HeH+X or He, X- since the electron affinity of positive helium, etc. is greater than that of any appropriate species X, and so such salts would spontaneously decompose ... [Pg.949]

The main reasons for using an SCF as a reactant in a reaction is either to avoid using an additional solvent or to maximize the concentration of reactant. Examples include the formation of C2H4 complexes, [11,15] C-H activation, [16,17] transient formation of noble-gas complexes [18,19] and the activation of CO2 itself [3,20,21], Apart from CO2, these reactions have all been carried out on a very small scale, often without isolation of solid... [Pg.474]

The optical spectra of Ni, Pd and Pt in noble gas matrices have been measured in order to search for complexes of these Group VIII ligands. Changes in the energy levels of the matrix isolated atoms occur because of a weak metal interaction. For platinum the frequency shifts follow the trend Xe > Ar > Kr, but whether this interaction is described as a Van der Waals interaction or a weak coordinate bond is open to speculation.1976... [Pg.492]

Silylenes are short-lived intermediates, and their detection requires fast methods such as ultraviolet (UV)24 or laser-induced fluorescence spectroscopy.25 The characteristic absorption maxima in the UV-visible spectra of these species, which are assigned to n - p transitions of electrons at the silicon atom, were used as a fingerprint to prove the occurrence of silylenes in matrices or solution. In addition, these transient species, which under normal conditions are too short lived to be observed by a slow detection method such as infrared (IR) spectroscopy, can be isolated in inert hydrocarbon or noble gas matrices, thus allowing the accurate measurement of their IR spectra. [Pg.11]

To successfully use high-resolution molecular spectroscopy to study tunneling, two conditions have to be met suppression of hot bands and removal of inhomogeneous broadening. In the traditional technique of equilibrium sample preparation these conditions are mutually exclusive To decrease the hot band intensity one needs to lower the temperature, which entails the condensation of a sample and, consequently, appearance of inhomogeneous spectral effects which are due to intermolecular interactions in the solid. To some extent, a compromise is achieved in the matrix isolation method, where the intermolecular interactions between the guest and host molecules are minimized by using the noble gas matrix. However, even in this case the asymmetry of the potential is... [Pg.261]

This recognition spurred extensive laboratory work aimed at identifying and isolating the phases within meteorites that carried the anomalous noble gases, using the noble gas isotopic compositions themselves as a guide to successful or unsuccessful enrichment of their carriers. The history of this development is complicated, but it eventually led to observed noble gas compositions with anomalies, relative to normal solar system composition, measured not in permil or percent but in factors of two or even powers of ten (Figure 3.5), in materials that could be identified as extrasolar and even circumstellar because essentially all their elements were radically anomalous (Lewis, Srinivasan Anders, 1975 also see Bernatowicz et al., 1987 Anders and Zinner, 1993 Zinner, 1997). [Pg.95]


See other pages where Noble gases isolation is mentioned: [Pg.375]    [Pg.85]    [Pg.9]    [Pg.237]    [Pg.86]    [Pg.244]    [Pg.124]    [Pg.160]    [Pg.407]    [Pg.410]    [Pg.436]    [Pg.42]    [Pg.41]    [Pg.41]    [Pg.48]    [Pg.141]    [Pg.821]    [Pg.821]    [Pg.14]    [Pg.123]    [Pg.374]    [Pg.33]    [Pg.949]    [Pg.525]    [Pg.1144]    [Pg.1175]    [Pg.59]    [Pg.72]    [Pg.95]    [Pg.110]    [Pg.703]    [Pg.25]   
See also in sourсe #XX -- [ Pg.496 ]




SEARCH



Isolation of Noble Gases from Liquid Air

Noble gases, matrix isolation

© 2024 chempedia.info