Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nitroxide mediated polymerization controlled radical

The tendency of nitrones to react with radicals has been widely used in new synthetic routes to well-defined polymers with low polydispersity. The recent progress in controlled radical polymerization (CRP), mainly nitroxide-mediated polymerization (NMP) (695), is based on the direct transformation of nitrones to nitroxides and alkoxyamines in the polymerization medium (696, 697). In polymer chemistry, NMP has become popular as a method for preparing living polymers (698) under mild, chemoselective conditions with good control over both, the polydispersity and molecular weight. [Pg.295]

Apart from ATRP, the concept of dual initiation was also applied to other (controlled) polymerization techniques. Nitroxide-mediated living free radical polymerization (LFRP) is one example reported by van As et al. and has the advantage that no further metal catalyst is required [43], Employing initiator NMP-1, a PCL macroinitiator was obtained and subsequent polymerization of styrene produced a block copolymer (Scheme 4). With this system, it was for the first time possible to successfully conduct a one-pot chemoenzymatic cascade polymerization from a mixture containing NMP-1, CL, and styrene. Since the activation temperature of NMP is around 100 °C, no radical polymerization will occur at the reaction temperature of the enzymatic ROP. The two reactions could thus be thermally separated by first carrying out the enzymatic polymerization at low temperature and then raising the temperature to around 100 °C to initiate the NMP. Moreover, it was shown that this approach is compatible with the stereoselective polymerization of 4-MeCL for the synthesis of chiral block copolymers. [Pg.91]

Nitroxide mediated polymerization (NMP) [56, 57]. This consists in a thermally reversible termination reaction by a homolytic cleavage of a C-ON bond of an alkoxyamine, giving rise to an initiating alkyl radical (active species) and a nitroxyl radical, which brings control to the reaction [58]. [Pg.12]

Nitroxide mediated polymerization (NMP) is another type of controlled radical polymerization technique used to synthesize polymer hybrids. It relies on the reversible trapping of growing macro-radicals by nitroxide to form dormant species in which the C-ON covalent bond is thermally cleavaged (Fig. 19). At a polymerization temperature, the equilibrium between dormant and active species is strongly shifted to the dormant side, which Emits the irreversible chain termination reaction. [Pg.102]

The controlled emulsion polymerization of styrene using nitroxide-mediated polymerization (NMP), reversible addition-fragmentation transfer polymerization (RAFT), stable free radical polymerization (SFR), and atom transfer radical polymerization (ATRP) methods is described. The chain transfer agent associated with each process was phenyl-t-butylnitrone, nitric oxide, dibenzyl trithiocarbonate, 1,1-diphenylethylene, and ethyl 2-bromo-isobutyrate, respectively. Polydispersities between 1.17 and 1.80 were observed. [Pg.595]

The thio-nitroxide mediated polymerization agent, diethyl-dithiocarbamic acid 4,4-dimethyl-5-oxo-4,5-dihydro-oxazol-2-ylmethyl ester, (II), has also been prepared as an azlactone photoiniferters for controlled radical polymerizations (4). [Pg.386]

It is obvious from the above discussion that under the correct conditions and with the appropriate mediating nitroxide free radical, living polymerization conditions can be achieved. On the basis of this realization, numerous groups have demonstrated that the degree of structural control normally associated with more traditional living processes, such as anionic procedures, can be equally applied to nitroxide-mediated living free radical polymerizations. [Pg.115]

The fifty chapters submitted for publication in the ACS Symposium series could not fit into one volume and therefore we decided to split them into two volumes. In order to balance the size of each volume we did not divide the chapters into volumes related to mechanisms and materials but rather to those related to atom transfer radical polymerization (ATRP) and to other controlled/living radical polymerization methods reversible-addition fragmentation transfer (RAFT) and other degenerative transfer techniques, as well as stable free radical pol5mierizations (SFRP) including nitroxide mediated polymerization (NMP) and organometallic mediated radical polymerization (OMRP). [Pg.2]

Controlled/ Living radical polymerization (CRP) of vinyl acetate (VAc) via nitroxide-mediated polymerization (NMP), organocobalt-mediated polymerization, iodine degenerative transfer polymerization (DT), reversible radical addition-fragmentation chain transfer polymerization (RAFT), and atom transfer radical polymerization (ATRP) is summarized and compared with the ATRP of VAc catalyzed by copper halide/2,2 6 ,2 -terpyridine. The new copper catalyst provides the first example of ATRP of VAc with clear mechanism and the facile synthesis of poly(vinyl acetate) and its block copolymers. [Pg.139]

VAc has been successfully polymerized via controlled/ living radical polymerization techniques including nitroxide-mediated polymerization, organometallic-mediated polymerization, iodine-degenerative transfer polymerization, reversible radical addition-fragmentation chain transfer polymerization, and atom transfer radical polymerization. These methods can be used to prepare well-defined various polymer architectures based on PVAc and poly(vinyl alcohol). The copper halide/t is an active ATRP catalyst for VAc, providing a facile synthesis of PVAc and its block copolymers. Further developments of this catalyst will be the improvements of catalytic efficiency and polymerization control. [Pg.155]

Controlled Radical Polymerization (CRP) is the most recently developed polymerization technology for the preparation of well defined functional materials. Three recently developed CRP processes are based upon forming a dynamic equilibrium between active and dormant species that provides a slower more controlled chain growth than conventional radical polymerization. Nitroxide Mediated Polymerization (NMP), Atom Transfer Radical Polymerization (ATRP) and Reversible Addition Fragmentation Transfer (RAFT) have been developed, and improved, over the past two decades, to provide control over radical polymerization processes. This chapter discusses the patents issued on ATRP initiation procedures, new functional materials prepared by CRP, and discusses recent improvements in all three CRP processes. However the ultimate measure of success for any CRP system is the preparation of conunercially viable products using acceptable economical manufacturing procedures. [Pg.385]

Attaching initiators onto the silica surfaces allows controlled radical polymerization, either nitroxide mediated polymerization (NMP) [109] or ATRP [110] resulting in core-shell particles. [Pg.22]

Careful and extensive investigations of these nitroxide-mediated polymerizations (also referred to as stable free radical polymerization) have established optimum conditions for controlled radical polymerization of a variety of vinyl monomers (Matyjaszewski, 1998,2000). Variables examined include the structure of the nitroxide and the presence of other additives to control spontaneous polymerization of monomers such as styrene. It is noteworthy that in place of alkoxyamine initiators, a mixture of a normal free radical initiator such as an azo compound or a peroxide can also be used. [Pg.41]

Besides the ATRP method, other controlled radical polymerization techniques such as reversible addition/fragmentation chain transfer polymerization (RAFT) (Zhang et al., 2007) and nitroxide-mediated polymerization (NMP) (Yoshida and Ohta, 2005), have also been explored to synthesize azo BCs. [Pg.414]

Initiators for the controlled living radical polymerization could also be introduced to silica particles. Nitroxide-mediated polymerization (NMP) conducted with styrene in miniemulsion led to the generation of core-shell particles, with styrene grafted to the central silica particle [131]. PBA could be polymerized from 20 nm silica beads by attaching an ATRP agent to the silica surface and subsequent miniemulsion polymerization [132]. Confining the polymerization to miniemulsion droplets could avoid gel formation, which was observed in the bulk reaction. Due to the limited monomer diffusion, only 25-35% of conversion could be obtained in bulk. [Pg.216]

In this review, the term macromer is used to describe oligomer or polymer precursors that undergo reversible association to form supramolecular polymers or networks. Macromer synthesis, although a crucial aspect of supramolecular science, is also out of the scope of this review. Several comprehensive reviews of the synthesis of H-bonding polymers are available [10, 11,42] and primarily describe the application of controlled radical polymerization techniques, including atom-transfer radical polymerization (ATRP), reversible addition-fragmentation chain transfer (RAFT) polymerization, and nitroxide-mediated polymerization (NMP). For synthesis of telechelic polymers, avoiding monofunctional impurities that can act as chain stoppers is crucially important [43],... [Pg.53]


See other pages where Nitroxide mediated polymerization controlled radical is mentioned: [Pg.273]    [Pg.275]    [Pg.8]    [Pg.63]    [Pg.26]    [Pg.87]    [Pg.14]    [Pg.102]    [Pg.231]    [Pg.104]    [Pg.106]    [Pg.114]    [Pg.284]    [Pg.190]    [Pg.7]    [Pg.135]    [Pg.310]    [Pg.401]    [Pg.128]    [Pg.270]    [Pg.666]    [Pg.107]    [Pg.218]    [Pg.5]    [Pg.82]    [Pg.471]    [Pg.581]    [Pg.223]    [Pg.48]    [Pg.64]    [Pg.23]    [Pg.67]   


SEARCH



Controlled polymerization

Controlled radical

Controlled radical polymerization

Mediated polymerization

Mediated radical polymerization

Nitroxide

Nitroxide mediated radical

Nitroxide radicals

Nitroxide-mediated polymerization

Nitroxides

Radical mediated

© 2024 chempedia.info