Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nitrous oxide technique

The temperature dependence of the relative rates, and therefore the differences in the activation energies and the ratios of the preexponential factors, have been determined (29) for several olefins by the nitrous oxide technique. The values are summarized in Table IV. In all cases the... [Pg.140]

The main problem in this technique is getting the atoms into the vapour phase, bearing in mind the typically low volatility of many materials to be analysed. The method used is to spray, in a very fine mist, a liquid molecular sample containing the atom concerned into a high-temperature flame. Air mixed with coal gas, propane or acetylene, or nitrous oxide mixed with acetylene, produce flames in the temperature range 2100 K to 3200 K, the higher temperature being necessary for such refractory elements as Al, Si, V, Ti and Be. [Pg.65]

Dielectric Deposition Systems. The most common techniques used for dielectric deposition include chemical vapor deposition (CVD), sputtering, and spin-on films. In a CVD system thermal or plasma energy is used to decompose source molecules on the semiconductor surface (189). In plasma-enhanced CVD (PECVD), typical source gases include silane, SiH, and nitrous oxide, N2O, for deposition of siUcon nitride. The most common CVD films used are siUcon dioxide, siUcon nitride, and siUcon oxynitrides. [Pg.384]

Atomic absorption spectroscopy is more suited to samples where the number of metals is small, because it is essentially a single-element technique. The conventional air—acetylene flame is used for most metals however, elements that form refractory compounds, eg, Al, Si, V, etc, require the hotter nitrous oxide—acetylene flame. The use of a graphite furnace provides detection limits much lower than either of the flames. A cold-vapor-generation technique combined with atomic absorption is considered the most suitable method for mercury analysis (34). [Pg.232]

Nitrous oxide has received increasing attention the last decade, due to the growing awareness of its impact on the environment, as it has been identified as an ozone depletion agent and as a Greenhouse gas [1]. Identified major sources include adipic acid production, nitric acid and fertilizer plants, fossil fuel and biomass combustion and de-NOx treatment techniques, like three-way catalysis and selective catalytic reduction [2,3]. [Pg.641]

A technique known as selective electron capti sensitization has been used to increase the response of the BCD weakly electron-capturing compounds [117]. In this mode a standard electron-capture detector is used with a supply of makeup gas doped with a specific sensitizing reagent such as oxygen nitrous oxide. In this way the BCD functions as an ion-aoleculSj... [Pg.145]

The first use of supercritical fluid extraction (SFE) as an extraction technique was reported by Zosel [379]. Since then there have been many reports on the use of SFE to extract PCBs, phenols, PAHs, and other organic compounds from particulate matter, soils and sediments [362, 363, 380-389]. The attraction of SFE as an extraction technique is directly related to the unique properties of the supercritical fluid [390]. Supercritical fluids, which have been used, have low viscosities, high diffusion coefficients, and low flammabilities, which are all clearly superior to the organic solvents normally used. Carbon dioxide (C02, [362,363]) is the most common supercritical fluid used for SFE, since it is inexpensive and has a low critical temperature (31.3 °C) and pressure (72.2 bar). Other less commonly used fluids include nitrous oxide (N20), ammonia, fluoro-form, methane, pentane, methanol, ethanol, sulfur hexafluoride (SF6), and dichlorofluoromethane [362, 363, 391]. Most of these fluids are clearly less attractive as solvents in terms of toxicity or as environmentally benign chemicals. Commercial SFE systems are available, but some workers have also made inexpensive modular systems [390]. [Pg.56]

A number of conclusions can be drawn from this first detailed analysis of NO production in methane-air diffusion flames by techniques of RRA. It is found that all production mechanisms have rates dependent on the peak flame temperature T°. The production rates for the thermal and nitrous oxide mechanisms increase sufficiently rapidly with T° that they are calculated by AEA after the peak flame temperature, and superequilibrium radical mole fractions are obtained from the RRA analysis of the primary flame structure. The flame temperature depends on the temperature of the fuel and oxidizer streams and... [Pg.419]

Molybdenum may be identified at trace concentrations by flame atomic absorption spectrometry using nitrous oxide-acetylene flame. The metal is digested with nitric acid, diluted and analyzed. Aqueous solution of its compounds alternatively may be chelated with 8—hydroxyquinobne, extracted with methyl isobutyl ketone, and analyzed as above. The metal in solution may also be analyzed by ICP/AES at wavelengths 202.03 or 203.84 nm. Other instrumental techniques to measure molybdenum at trace concentrations include x-ray fluorescence, x-ray diffraction, neutron activation, and ICP-mass spectrometry, this last being most sensitive. [Pg.584]

Rhenium can be analyzed by various instrumental techniques that include flame-AA, ICP-AES, ICP-MS, as well as x-ray and neutron activation methods. For flame-AA analysis the metal, its oxide, or other insoluble salts are dissolved in nitric acid or nitric-sulfuric acids, diluted, and aspirated directly into nitrous oxide-acetylene flame. Alternatively, rhenium is chelated with 8-hydroxy quinoline, extracted with methylisobutyl ketone and measured by flame-AA using nitrous oxide-acetylene flame. [Pg.790]

Titanium can be meaured at trace concentations by flame-AA using a nitrous oxide-acetylene flame. The measurement can be done at 365.3 nm. ICP-AES and ICP/MS techniques also are apphcable. The metal or its compounds must be dissolved by digestion with HF and HCl and the solution diluted and analyzed instrumentaUy. [Pg.944]

An anxious 5-year-old child with chronic otitis media and a history of poorly controlled asthma presents for placement of ventilating ear tubes. General anesthesia is required for this short elective ambulatory surgery procedure. What preanesthetic medication should be administered Which of the three commonly used anesthetic techniques would you choose to use in this situation (1) inhalational anesthesia with sevoflurane for induction and maintenance in combination with nitrous oxide, (2) intravenous anesthesia with propofol for induction and maintenance of anesthesia in combination with remifentanil, or (3) balanced anesthesia using propofol for induction of anesthesia followed by a combination of sevoflurane and nitrous oxide for maintenance of anesthesia ... [Pg.535]


See other pages where Nitrous oxide technique is mentioned: [Pg.115]    [Pg.120]    [Pg.121]    [Pg.122]    [Pg.122]    [Pg.135]    [Pg.137]    [Pg.142]    [Pg.72]    [Pg.420]    [Pg.115]    [Pg.120]    [Pg.121]    [Pg.122]    [Pg.122]    [Pg.135]    [Pg.137]    [Pg.142]    [Pg.72]    [Pg.420]    [Pg.429]    [Pg.353]    [Pg.393]    [Pg.69]    [Pg.2338]    [Pg.478]    [Pg.806]    [Pg.443]    [Pg.50]    [Pg.609]    [Pg.72]    [Pg.329]    [Pg.243]    [Pg.150]    [Pg.340]    [Pg.36]    [Pg.1175]    [Pg.61]    [Pg.131]    [Pg.246]    [Pg.196]    [Pg.294]    [Pg.422]    [Pg.40]    [Pg.46]    [Pg.61]    [Pg.535]   
See also in sourсe #XX -- [ Pg.420 ]




SEARCH



Nitrous oxid

Nitrous oxide

Nitrous oxide oxidation

© 2024 chempedia.info