Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nitronates nitroalkene cycloaddition

The Michael addition of allyl alcohols to nitroalkenes followed by intramolecular silyl nitronate olefin cycloaddition (Section 8.2) leads to functionalized tetrahydrofurans (Eq. 4.15).20... [Pg.75]

The majority of asymmetric dipolar cycloadditions have been investigated in the context of the tandem [4 + 2]/[3 + 2]-nitroalkene cycloaddition. The chiral nitronate is prepared by using either a chiral nitroalkene, vinyl ether, or Lewis acid in the hrst cycloaddition. The acetal center at C(6) of the nitronate provides important steric and electronic effects that control the subsequent dipolar cycloaddition. Subsequently, in the cycloadditions of the chiral nitroalkenes 281 and 284, the dipolarophile approaches from the side distal to that of the substituent at C(4) and the acetal center at C(6) (Eq. 2.27 and Table 2.53) (90,215). [Pg.146]

The dipolar cycloaddition of nitronates has been applied to the synthesis of several natural products in the context of the tandem [4+2] / [3 + 2] nitroalkene cycloaddition process. All of these syntheses have focused on the construction of pyrrolidine, pyrrolizidine, and indolizidine alkaloids. For example, the synthesis of ( )-hastanecine (316), a necine alkaloid, involves the elaboration of a p-benzoy-loxynitroalkene 311 via [4 + 2] cycloaddition with a chiral vinyl ether (312) in the presence of a titanium based Lewis acid, to provide the nitronate 313 with high diastereo- and facial selectivity (Scheme 2.30) (69). The dipolar cycloaddition of... [Pg.155]

If nitroalkenes are employed as heterodienes in hetero Diels-Alder reactions instead of nitrosoalkenes, cyclic nitrones are formed. These cycloadducts undergo numerous subsequent reactions, and especially the combination of this hetero Diels-Alder reaction with a 1,3-dipolar cycloaddition is an extremely powerful tool for the synthesis of polycyclic alkaloids. This domino [4+ 2]/[3+ 2] cycloaddition chemistry has been comprehensively reviewed by Denmark and Thorarensen very recently, and this review also covers many hetero Diels-Alder reactions of nitroalkenes being not part of this sequential transformation [5]. Therefore the present article will focus on some selected examples which might highlight the advanced state of the art concerning stereocontrol of these reactions. On the other hand, an insight shall be given into the multitude of polycyclic structures accessible by means of nitroalkene cycloaddition chemistry. [Pg.70]

Although electron-rich dienophUes are the most reactive, unactivated alkenes also can participate in the [4 + 2] cycloaddition of nitroalkenes. An example of one of the slowest reported nitroalkene cycloadditions is provided in Scheme 16.10b [81]. The dienophile 42 contains a terminal double bond and the reaction takes 3 days at 15 °C to provide nitronate 43, albeit still in very good yield. [Pg.478]

The strongly nucleophilic enamines are among the first reported dienophiles for nitroalkene cycloadditions [85]. Thus, nitroalkene 51 undergoes thermal [4 + 2] cycloaddition with enamine 52 to provide nitronate 53 (Scheme 16.11) [86]. [Pg.478]

An intermolecular [4 + 2] nitroalkene cycloaddition can be followed by an intramolecular [3 + 2] cycloaddition of the formed nitronate intermediate. As illustrated in Figure 16.7, two variants of such a process are possible, depending on whether the dipolarophile is attached to the nitroalkene or the dienophile. The former has been studied more extensively and is described in the following section. [Pg.509]

High-pressnre promoted cycloadditions of nitroalkenes and enol ethers eliminate the nse of Lewis acids fEq 8 106 "Thus, even sterically hmdered nitroalkenes react with 2,3-thhydro-furan to give the exo cyclic nitronates stereoselecdvely without using Lewis acids... [Pg.279]

Nitro compounds have been converted into various cyclic compounds via cycloaddition reactions. In particular, nitroalkenes have proved to be useful in Diels-Alder reactions. Under thermal conditions, they behave as electron-deficient alkenes and react with dienes to yield 3-nitrocy-clohexenes. Nitroalkenes can also act as heterodienes and react with olefins in the presence of Lewis acids to yield cyclic alkyl nitronates, which undergo [3+2] cycloaddition. Nitro compounds are precursors for nitrile oxides, alkyl nitronates, and trialkylsilyl nitronates, which undergo [3+2]cycloaddition reactions. Thus, nitro compounds play important roles in the chemistry of cycloaddition reactions. In this chapter, recent developments of cycloaddition chemistry of nitro compounds and their derivatives are summarized. [Pg.231]

Alkyl and silyl nitronates are, in principle, /V-alkoxy and /V-silyloxynitrones, and they can react with alkenes in 1,3-dipolar cycloadditions to form /V-alkoxy- or /V-silyloxyisoxaz.olidine (see Scheme 8.25). The alkoxy and silyloxy groups can be eliminated from the adduct on heating or by acid treatment to form 2-isoxazolines. It should be noticed that isoxazolines are also obtained by the reaction of nitrile oxides with alkenes thus, nitronates can be considered as synthetic equivalents of nitrile oxides. Since the pioneering work by Torssell et al. on the development of silyl nitronates, this type of reaction has become a useful synthetic tool. Recent development for generation of cyclic nitronates by hetero Diels-Alder reactions of nitroalkenes is discussed in Section 8.3. [Pg.267]

Hassner and coworkers have developed a one-pot tandem consecutive 1,4-addition intramolecular cycloaddition strategy for the construction of five- and six-membered heterocycles and carbocycles. Because nitroalkenes are good Michael acceptors for carbon, sulfur, oxygen, and nitrogen nucleophiles (see Section 4.1 on the Michael reaction), subsequent intramolecular silyl nitronate cycloaddition (ISOC) or intramolecular nitrile oxide cycloaddition (INOC) provides one-pot synthesis of fused isoxazolines (Scheme 8.26). The ISOC route is generally better than INOC route regarding stereoselectivity and generality. [Pg.270]

Recently, Denmark and coworkers have developed a new strategy for the construction of complex molecules using tandem [4+2]/[3+2]cycloaddition of nitroalkenes.149 In the review by Denmark, the definition of tandem reaction is described and tandem cascade cycloadditions, tandem consecutive cycloadditions, and tandem sequential cycloadditions are also defined. The use of nitroalkenes as heterodienes leads to the development of a general, high-yielding, and stereoselective method for the synthesis of cyclic nitronates (see Section 5.2). These dipoles undergo 1,3-dipolar cycloadditions. However, synthetic applications of this process are rare in contrast to the functionally equivalent cycloadditions of nitrile oxides. This is due to the lack of general methods for the preparation of nitronates and their instability. Thus, as illustrated in Scheme 8.29, the potential for a tandem process is formulated in the combination of [4+2] cycloaddition of a donor dienophile with [3+2]cycload-... [Pg.274]

The strategy based on tandem cycloaddition leads to a short and efficient asymmetric synthesis of the pyrrolizidine necine base (-)-hastanecine, as shown in Scheme 8.32.163 Pyrrolizidine alkaloids have a long history for attracting the interest of synthetic chemists because of their physiological properties. The method of Denmark shown in this scheme is very simple and applied to synthesis of various alkaloids. The Lewis acid-promoted [4+2] cycloaddition between 2-acyloxy nitroalkene and chiral vinyl ether gives a nitronate that... [Pg.280]

The simplest nitroalkene, nitroethene, undergoes Lewis acid-promoted [4+2] cycloaddition with chiral vinyl ethers to give cyclic nitronates with high diastereoselectivity. The resulting cyclic nitronates react with deficient alkenes to effect a face-selective [3+2] cycloaddition. A remote acetal center controls the stereochemistry of [3+2] cycloaddition. This strategy is applied to synthesis of the pyrrolizidine alkaloids (+)-macronecine and (+)-petasinecine (Scheme 8.33).165... [Pg.281]

Synthesis of Six-membered Cyclic Nitronates by the [4 + 2]-cycloaddi-tion Reaction The [4 + 2]-cycloaddition reaction of conjugated nitroalkenes (42) with olefins (43) is the most powerful and widely used method for the synthesis of six-membered cyclic nitronates (35) (Scheme 3.38). [Pg.462]

Initially, a complex of nitroalkene (42) with LA (A) is reversibly formed. The efficient concentration of the latter is determined by the reaction conditions and the nature of heterodiene (42) and LA. This complex acts as a Michael substrate and adds alkene (43) to give bipolar adduct B, which undergoes cycliza-tion to give cationic intermediate C. The latter eliminates LA to yield target nitronate (35). In the case of nonconcerted cycloaddition, ionic intermediate B can undergo different isomerization reactions, some of which are considered below. The stereoselectivity of the process depends on the reactive conformation... [Pg.463]

Intramolecular [3+ 2]-cycloaddition of six-membered cyclic nitronates was extensively studied by Prof. Denmark and coworkers for the tandem [4 + 2] [3 + 2] -cycloaddition reactions of nitroalkenes. Detailed considerations of this problem were summarized in two reviews (394a, b). Most data were comprehensively discussed in Reference 394b. It is unnecessary to repeat this information however, it is worthwhile to briefly review the available data. [Pg.569]

This approach has been comprehensively described in Reference 99 and two monographs 427 and 428. Hence, we will not consider this approach in detail, the more so that selected aspects of [4+ 2]-cycloaddition reactions of conjugated nitroalkenes with olefins were discussed in Section 3.2.1.2.2.2. Many concerned with the synthesis of six-membered cyclic nitronates, many problems of [3+ 2]-cycloaddition of six-membered cyclic nitronates were also considered above (see Sections 3.4.3.1.4 and 3.4.3.3). [Pg.591]

The asymmetric tandem cycloaddition of the chiral carbohydrate nitroalkene (35) with ethyl vinyl ether involves the initial formation of the nitronate (36) which reacts exclusively with electron-withdrawing alkenes by 3 -I- 2-cycloaddition to yield chiral bicycles (37) and (38) (Scheme 12). ... [Pg.460]

Borrachero et al. (180) prepared a number of sugar isoxazolidines by the reaction of carbohydrate-functionalized nitrones with nitroalkenes (Scheme 1.33). They found a matched pair of chiral sugar cycloaddition reaction partners to be... [Pg.27]

Nitroalkenes can also be converted to nitronates by direct combination with an alkene. The nitronate is formed as a result of a [4 + 2] cycloaddition of the electron-deficient nitroalkene, wherein one of the N—O bonds of the nitro group participates as part of the 4n fragment (Eq. 2.19) (89). Because of the electron-deficient nature of the heterodiene, alkenes react in the order electron rich > electroneutral > electron poor. Therefore, the majority of dienophiles investigated are enamines (52,71,199-207) and vinyl ethers (99,208-213). [Pg.136]

Cyclic alkyl nitronates may be used in tandem [4+2]/[3+2] cycloadditions of nitroalkanes, and this reaction has been extensively studied by Denmark et al. (64,333-335). In recent work, they developed the silicon-tethered heterodiene-alkene 219 (Scheme 12.63). Steric hindrance and the fact that both the nitroalkene and the a,p-unsaturated ester in 219 are electron deficient renders the possibility of self-condensation. Instead, 219 reacts with the electron-rich chiral vinyl ether 220 in the presence of the catalyst 224 to form the intermediate chiral nitronate 221. The tandem reaction proceeds from 221 with an intramolecular 1,3-dipolar cycloaddition to form 222 with 93% de. Further synthetic steps led to the formation of ( )-detoxinine 223 (333). A similar type of tandem reaction has also been applied by Chattopadhyaya and co-workers (336), using 2, 3 -dideoxy-3 -nitro-2, 3 -didehydrothymidine as the starting material (336). [Pg.863]

In the ISOC process alkenic silyl nitronates (649) are the reactive intermediates which undergo cycloaddition. This species is generated by reacting the nitroalkene (647) (Scheme 86) or nitroalkyne (651) (Scheme 87) with triethylamine and trimethylchlorosilane in benzene at room temperature for 48 h to give the fused isoxazole systems (648) or (652). A cis relationship between the less bulky C-7 and the hydrogen at C-3a in the products (648) is preferred. The yields of the reactions average... [Pg.347]


See other pages where Nitronates nitroalkene cycloaddition is mentioned: [Pg.241]    [Pg.507]    [Pg.277]    [Pg.277]    [Pg.278]    [Pg.278]    [Pg.280]    [Pg.306]    [Pg.592]    [Pg.55]    [Pg.353]    [Pg.60]    [Pg.158]    [Pg.70]    [Pg.167]   
See also in sourсe #XX -- [ Pg.136 ]

See also in sourсe #XX -- [ Pg.136 ]




SEARCH



Alkyl nitronates nitroalkene cycloaddition

Cyclic nitronates nitroalkene cycloaddition

Nitroalkene

Nitroalkene 1 + 2]cycloaddition

Nitroalkene, cycloadditions

Nitroalkenes

Nitroalkenes, cycloaddition

Nitronates cycloadditions

Nitrones cycloaddition

Nitrones, cycloadditions

© 2024 chempedia.info