Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

4- nitroalkanal 2-alkenal

GSTs catalyze a wide variety of reactions. The groups attacked include epoxides, haloalkanes, nitroalkanes, alkenes, methyl sulfoxide derivatives, and aromatic halo-and nitro- compounds. Because many of these electrophiles are reactive and capable of binding to critical nucleophiles, including proteins and nucleic acids, conjugation represents an important detoxication reaction. [Pg.129]

D. Glutathione conjugation and mercapturic acid biosynthesis Glutathione-S-transferases Epoxides, haloalkanes, nitroalkanes, alkenes and aromatic halo-and nitro-compounds R-X + GSH R-SG + X where RX is a xenobiotic with an electrophilic centre and GSH in glutathione. Conjugates can be further metabolized to mercapturic acids... [Pg.53]

Nitronates derived from primary nitroalkanes can be regarded as a synthetic equivalent of nitrile oxides since the elimination of an alcohol molecule from nitronates adds one higher oxidation level leading to nitrile oxides. This direct / -elimination of nitronates is known to be facilitated in the presence of a Lewis acid or a base catalyst [66, 72, 73]. On the other hand, cycloaddition reactions of nitronates to alkene dipolarophiles produce N-alkoxy-substituted isoxazolidines as cycloadducts. Under acid-catalyzed conditions, these isoxazolidines can be transformed into 2-isoxazolines through a ready / -elimination, and 2-isoxazolines correspond to the cycloadducts of nitrile oxide cycloadditions to alkenes [74]. [Pg.272]

The Michael addition of nih oalkanes to alkenes substituted with two elecbon-withdrawing groups at the a- and 3-positions provides a new method for the preparation of functionalized alkenes. Although reactions are not new, Ballini and coworkers have used this sbategy in the synthesis of polyfunctionalized unsaturated carbonyl derivatives by Michael addition of nih oalkanes to enediones as shown in Eqs. 7.124-7.126. Success of this type of reaction depends on the base and solvent. They have found that DBU in acetonihile is the method of choice for this puipose. This base-solvent system has been used widely in Michael additions of nitroalkanes to elechon-deficient alkenes (see Section 4.3, which discusses the Michael addition). ... [Pg.220]

AlkenyldQon using nitroalkanes foUowedby theselecQve reducQonof the double bends with NiCl and NdBbb, can be regarded as the addition of alkyl aruons to electron-deficient alkenes... [Pg.221]

Nitroedianeundergoes base-catrilyzed addidon to to give3-hydroxy-l,3-dihydrofu]leryl ketoxime by way of a unique intramolecidar redox process, which is not observed in normal electron deficient alkenes fEq. S.77. " FSee Secdon 4.3 Michael addidon of nitroalkanes. ... [Pg.268]

The photochemical cyclisation of p.y-unsaturated ketoximes to 2-isoxazolines, e.g., 16—>17, has been reported <95RTC514>. 2-Isoxazolines are obtained from alkenes and primary nitroalkanes in the presence of ammonium cerium nitrate and formic acid <95MI399>. Treatment of certain 1,3-diketones with a nitrating mixture generates acyl nitrile oxides, which can be trapped in situ as dipolar cycloadducts (see Scheme 3) <96SC3401>. [Pg.208]

The earliest reported Fxs were the result of the reaction of nitrous acid with naturally occurring alkenes being the identified intermediate a a-nitrooxime that suffers dehydration with cyclization. Apart from these conditions, the most recent Fxs synthesis descriptions have involved reactions between alkenes and dinitrogen trioxide (Fig. 3), nitroalkanes and aluminum trichlo-... [Pg.269]

The generation of other heteroq cles from Bfx and Fx has been the subject of exhaustive investigation. The most important transformation of Bfx to other heterocycles has been described by Haddadin and Issidorides, and is known as the Beirut reaction . This reaction involves a condensation between adequate substituted Bfx and alkene-type substructure synthons, particularly enamine and enolate nucleophiles. The Beirut reaction has been employed to prepare quinoxaline 1,4-dioxides [41], phenazine 5,10-dioxides (see Chap. Quinoxahne 1,4-dioxide and Phenazine 5,10-dioxide. Chemistry and Biology ), 1-hydroxybenzimidazole 3-oxides or benzimidazole 1,3-dioxides, when nitroalkanes have been used as enolate-producer reagent [42], and benzo[e] [ 1,2,4]triazine 1,4-dioxides when Bfx reacts with sodium cyan-amide [43-46] (Fig. 4). [Pg.271]

Scheme 2.23 provides some examples of conjugate addition reactions. Entry 1 illustrates the tendency for reaction to proceed through the more stable enolate. Entries 2 to 5 are typical examples of addition of doubly stabilized enolates to electrophilic alkenes. Entries 6 to 8 are cases of addition of nitroalkanes. Nitroalkanes are comparable in acidity to (i-ketocslcrs (see Table 1.1) and are often excellent nucleophiles for conjugate addition. Note that in Entry 8 fluoride ion is used as the base. Entry 9 is a case of adding a zinc enolate (Reformatsky reagent) to a nitroalkene. Entry 10 shows an enamine as the carbon nucleophile. All of these reactions were done under equilibrating conditions. [Pg.184]

Reduction of 1-nitro-1-alkenes with fermenting Baker s yeast proceeds enantioselectively to give optically active nitroalkanes (Eq. 3.53).81... [Pg.46]

The addition of alkoxides to 2-nitro-l-phenylthio-l-alkenes affords P-nitro-aldehyde acetals.276 The reaction of the same nitroalkenes with amines gives nitroenamines.270 They are important intermediates for organic synthesis and are generally prepared by the reaction of nitroalkanes with triethylorthoformate in the presence of alcohols or secondary amines.2"1 0 The methods of Eqs. 4.20 and 4.21 have some merits over the conventional methods, for variously substituted (3-nitro-aldehydes acetals or nitroenamines are readily prepared by these methods. [Pg.76]

The Michael addition of nitroalkanes to election-deficient alkenes provides a powerful synthetic tool in which it is perceived that the nitro group can be transformed into various functionalities. Various kinds of bases have been used for this transformation in homogeneous solutions, or, alternatively, some heterogeneous catalysts have been employed. In general, bases used in the Henry reaction are also effective for these additions (Scheme 4.18).133... [Pg.103]

The heterogeneous catalytic systems have some advantages over homogeneous reactions. Chemical transformations under heterogeneous conditions can occur with better efficiencies, higher purity of products, and easier work-up. Ballini and coworkers have found that commercial amberlyst A-27 is the best choice for the Michael addition of nitroalkanes with [ substituted alkene acceptors (Eq. 4.111).150 The reaction is also carried out by potassium carbonate in the presence of Aliquat 336 under ultrasonic irradiation (Eq. 4.112).151... [Pg.106]

The sequence of the Michael addition of nitroalkanes and denitration provides a general method for conjugate addition of primary and secondary alkyl groups to electron deficient alkenes (Eq. 4.122).168... [Pg.111]

The synthesis of 2,3,5-trialkylpyrroles can be easily achieved by conjugate addition of nitroalkanes to 2-alken-l,4-dione (prepared by oxidative cleavage of 2,5-dialkylfuran) with DBU in acetonitrile, followed by chemoselective hydrogenation (10% Pd/C as catalyst) of the C-C- double bond of the enones obtained by elimination of HN02 from the Michael adduct. The Paal-Knorr reaction (Chapter 10) gives 2,3,5-trialkylpyrroles (Eq. 4.124).171... [Pg.112]

The conversion of nitroalkanes to ketoximes can be achieved by the reduction with Zn in acetic acid,112 or Fe in acetic acid.113 Nitroalkenes are direcdy reduced into saturated ketoximes by these reagents, which are precursors for ketones (see Section 6.1.4 Nef reaction). Reduction of 3-O-ace-ty lated sugar 1 -nitro-1 -alkenes with Zn in acetic acid gives the corresponding 2,3-unsaturated sugar oximes in high yield, which is a versatile route to 2,3-unsaturated sugar derivatives (Eq. 6.58).114... [Pg.176]

One obvious synthetic route to isoxazoles and dihydroisoxazoles is by [3+2] cycloadditions of nitrile oxides with alkynes and alkenes, respectively. In the example elaborated by Giacomelli and coworkers shown in Scheme 6.206, nitroalkanes were converted in situ to nitrile oxides with 1.25 equivalents of the reagent 4-(4,6-di-methoxy[l,3,5]triazin-2-yl)-4-methylmorpholinium chloride (DMTMM) and 10 mol% of N,N-dimethylaminopyridine (DMAP) as catalyst [373], In the presence of an alkene or alkyne dipolarophile (5.0 equivalents), the generated nitrile oxide 1,3-dipoles undergo cycloaddition with the double or triple bond, respectively, thereby furnishing 4,5-dihydroisoxazoles or isoxazoles. For these reactions, open-vessel microwave conditions were chosen and full conversion with very high isolated yields of products was achieved within 3 min at 80 °C. The reactions could also be carried out utilizing a resin-bound alkyne [373]. For a related example, see [477]. [Pg.238]

Nitroalkanes react with Jt-deficient alkenes, for example, p-nitro ketones are produced from a,P-unsaturated ketones [41], whereas allylic nitro compounds have been prepared via the Michael-type addition of nitroalkanes with electron-deficient alkynes (Table 6.19). The reaction in either dimethylsulphoxide [42] or dimethyl-formamide [43] is catalysed by potassium fluoride in the presence of benzyltriethyl-ammonium chloride the reaction with dimethyl acetylenedicarboxylate is only successful in dimethylsulphoxide [42], Primary nitroalkanes produce double Michael adducts [42,44], A-Protected a-aminoacetonitriles react with alkynes under catalysed solidiliquid conditions to produce the Michael adducts [45] which, upon treatment with aqueous copper(Il) sulphate, are converted into a,p-unsaturated ketones. [Pg.281]

Superoxide anion formed in situ in a solution exposed to air (i.e. with only a small concentration of O2) has been used as an EGB to generate nitroalkane anions that may add to activated alkenes or to carbonyl compounds [130, 131]. An example is shown in Scheme 33. The reaction is catalytic since the product anion can act as a base toward the nitroalkane. Using the nitroalkane as the solvent favors the proton transfer pathway over the competing addition of the product anion to a second molecule of activated alkene, a pathway that may lead to polymerization [130]. In some cases, better yields of the Michael addition product were obtained if a stoichiometric amount of the anion was formed ex situ (with O2 as the PB), and the activated alkene added subsequently ]130, 132]. [Pg.482]

The procedure described in Sect. 14.9.1 for addition of nitroalkane anions to activated alkenes can also be used for addition to aldehydes. The nitroalcohol formed can be dehydrated in almost quantitative yields in dilute H3PO4 in a subsequent step [130, 131]. Starting with... [Pg.483]

Solutions of acetyl nitrate, prepared from fuming nitric acid and acetic anhydride, can react with alkenes to yield a mixture of nitro and nitrate ester products, but the /3-nitroacetate is usually the major product. ° Treatment of cyclohexene with this reagent is reported to yield a mixture of 2-nitrocyclohexanol nitrate, 2-nitrocyclohexanol acetate, 2-nitrocyclohexene and 3-nitrocyclohexene. °/3-Nitroacetates readily undergo elimination to the a-nitroalkenes on heating with potassium bicarbonate. /3-Nitroacetates are also reduced to the nitroalkane on treatment with sodium borohydride in DMSO. ... [Pg.4]

Most of the current preparative methods of oximes from nitroalkenes are not versatile. Reduction of nitroalkenes by CrCl2 or NaH2P02 in the presence of palladium was reported to afford the corresponding oximes, but the yields are not satisfactory. Zn-acetic acid and Na2Sn02 reductions are limited to the preparation of ketoximes only. Electroreduction of alkenes was reported to yield mixmres of ketones and ketoximes, or oximes and acetals (or ketones) depending on the strucmre of nitroalkanes. [Pg.172]

Nitrile oxides, which are formed by dehydration of nitroalkanes or by oxidation of oximes with hypochlorite,87 88 are also useful 1,3-dipoles. They are highly reactive and must be generated in situ.ss They react with both alkenes and alkynes. Entry 5 in Scheme 6.5 is an example in which the cycloaddition product (an isoxazole) was eventually converted to a prostaglandin derivative. [Pg.365]

A few years later, Hass reported an alternative synthesis of racemic amphetamine, which exemplifies the use of a nitroalkane as the source of the nitrogen atom (Scheme 17.4) (Hass et al., 1950). In this route, calcium-hydroxide-promoted Henry reaction of nitroethane and benzaldehyde (12) afforded an 86% yield of the nitro alkene 13. Simultaneous hydrogenation... [Pg.245]

Cyclization of nitro-stabilized radicals provides another method for the generation of cyclic nitronates (221). Oxidation of the aci-foim of nitroalkanes with ceric ammonium nitrate generates the ot-carbon centered radical, which in the presence of an alkene, leads to the homologation of the a-radical. In the case of a tethered alkene of appropriate length, radical addition leads to a cyclic nitronate (Scheme 2.20). [Pg.137]


See other pages where 4- nitroalkanal 2-alkenal is mentioned: [Pg.2473]    [Pg.230]    [Pg.2426]    [Pg.265]    [Pg.70]    [Pg.104]    [Pg.1009]    [Pg.532]    [Pg.70]    [Pg.104]    [Pg.169]    [Pg.5]    [Pg.8]    [Pg.35]    [Pg.171]    [Pg.134]    [Pg.138]   
See also in sourсe #XX -- [ Pg.1584 ]




SEARCH



1- halo-2-nitroalkane alkene

3 -nitroalkanal 1 -nitro-1 -alkene

4-nitroalkanal nitroalkane

Alkenes nitroalkanes

Alkenes nitroalkanes

Alkenes nitroalkanes, cycloaddition

Nitroalkane

Nitroalkane 1-nitro-1-alkene

Nitroalkanes

© 2024 chempedia.info