Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nitriles, preparation from alcohols

Strong nucleophiles such as Grignard reagents. In general, ortho esters are difficult to prepare directly from acids and are therefore more often prepared from the nitrile. Simple ortho esters derived from normal alcohols are the least stable in terms of acid stability and stability toward Grignard reagents, but as the ortho ester becomes more constrained its stability increases. [Pg.268]

The requisite starting cyanohydrin is readily prepared from a 20-keto-pregnane substitution at C-21 has no effect on the success of this step. However, the stability of the cyanohydrin is markedly dependent on other features of the molecule thus a 3-acetate confers greater stability than the free alcohol, and a 3-ketone is so unstable that subsequent dehydration with phosphorus oxychloride gives poor yields of the A -unsaturated nitrile. [Pg.218]

The above keto-nitrile (15 grams) was methylated with a solution of diazomethane in ether. (The diazomethane solution was prepared using 20 grams of N-nitrosomethylurea.) The ether and excess diazomethane were evaporated on the steam bath and the oil dissolved in ethanol (50 ml). To this was added a solution of guanidine in ethanol (100 ml) (prepared from 8.1 grams of the hydrochloride). The solution was refluxed for 5 hours, the alcohol removed and the residue treated with 5N sodium hydroxide. The insoluble material was then filtered. After purification by precipitation from dilute acetic acid with sodium hydroxide and by recrystallization from ethanol the product formed clear colorless needles (8.0 grams), MP 218°-220°C as described in U.S. Patent 2,602,794. [Pg.1335]

The addition of dry HCl to a mixture of a nitrile and an alcohol in the absence of water leads to the hydrochloride salt of an imino ester (imino esters are also called imidates and imino ethers). This reaction is called the Pinner synthesisThe salt can be converted to the free imino ester by treatment with a weak base such as sodium bicarbonate, or it can be hydrolyzed with water and an acid catalyst to the corresponding carboxylic ester. If the latter is desired, water may be present from the beginning, in which case aqueous HCl can be used and the need for gaseous HCl is eliminated. Imino esters can also be prepared from nitriles with basic catalysts. ... [Pg.1183]

The addition of Grignard reagents to aldehydes, ketones, and esters is the basis for the synthesis of a wide variety of alcohols, and several examples are given in Scheme 7.3. Primary alcohols can be made from formaldehyde (Entry 1) or, with addition of two carbons, from ethylene oxide (Entry 2). Secondary alcohols are obtained from aldehydes (Entries 3 to 6) or formate esters (Entry 7). Tertiary alcohols can be made from esters (Entries 8 and 9) or ketones (Entry 10). Lactones give diols (Entry 11). Aldehydes can be prepared from trialkyl orthoformate esters (Entries 12 and 13). Ketones can be made from nitriles (Entries 14 and 15), pyridine-2-thiol esters (Entry 16), N-methoxy-A-methyl carboxamides (Entries 17 and 18), or anhydrides (Entry 19). Carboxylic acids are available by reaction with C02 (Entries 20 to 22). Amines can be prepared from imines (Entry 23). Two-step procedures that involve formation and dehydration of alcohols provide routes to certain alkenes (Entries 24 and 25). [Pg.638]

Since sodium borohydride usually does not reduce the nitrile function it may be used for selective reductions of conjugated double bonds in oc,/l-un-saturated nitriles in fair to good yields [7069,1070]. In addition some special reagents were found effective for reducing carbon-carbon double bonds preferentially copper hydride prepared from cuprous bromide and sodium bis(2-methoxyethoxy)aluminum hydride [7766], magnesium in methanol [7767], zinc and zinc chloride in ethanol or isopropyl alcohol [7765], and triethylam-monium formate in dimethyl formamide [317]. Lithium aluminum hydride reduced 1-cyanocyclohexene at —15° to cyclohexanecarboxaldehyde and under normal conditions to aminomethylcyclohexane, both in 60% yields [777]. [Pg.175]

The method described for the preparation of 4-methoxycarbonyl-2-methyl-1,3-oxazole is that of Cornforth, and is widely applicable to the synthesis of 2-substituted 1,3-oxazole-4-carboxylates. The appropriate imidate hydrochloride required for step A is obtained from the reaction of a nitrile with an alcohol in the presence of hydrochloric add (eq. 1 ). A different synthesis of 2-substituted 1,3-oxazole-4-carboxylates employing rhodium-catalyzed heterocycloaddition of a diazomalonate to a nitrile has been described in Organic Syntheses by Helquist, but appears to be less general than the present route. [Pg.271]

Cyclopropylamines and cyclopropanols can be prepared from alkyknagnesium ha-lides. The reaction is catalyzed by titanium alcoholates and its mechanism includes the formation of a dialkoxytitanacyclopropane 270, which reacts with a carbonyl compound or nitrile (Scheme 22). The use of chiral titanium alcoholates allows the reaction to be performed with up to 78% ee (equation 171) . [Pg.582]

Other routes to 1,3-oxazines employ condensation reactions between /3-chloroketones and nitriles or between chloroalkyl amides and alkynes <69LA(723)ill) (Scheme 62). Thiazines are available through similar condensations between thioamides, aldehydes and acetylenes (74G849), and AH- 1,3-benzoxazines may be prepared from 2-hydroxybenzyl alcohols and nitriles in the presence of either perchloric or sulfuric acids (Schemes 63 and 64) (68MIP22700). [Pg.1019]

In reactions where nitriles are prepared from halogen compounds by double decomposition with alkali cyanide in alcoholic or aqueous alcoholic solution, the latter is usually added in solution or as a powder (cf. Preparations 77,78,79), otherwise the alkali halide which separates forms a coating round the cyanide and hinders further action. If the reaction is performed in aqueous solution, as in the preparation of malonic acid (p. 125), this precaution is not so necessary the alkali halide, when formed, remains in solution. [Pg.151]

Amines are at the same low oxidation level as alcohols and consequently are easily prepared by reduction. Amides and nitriles are reduced efficiently by LAH to amines. Nitriles give only primary amines while amides give 1°, 2°, or 3° amines depending on the number of carbon substituents on the amide nitrogen. The advantage of this method is that amides are easy to prepare from acid chlorides and amines while nitriles are available by displacement reactions. [Pg.202]

The Pinner reaction is a standard method for preparing orthoesters that involves treatment of a nitrile with an alcohol in the presence of anhydrous HCL Voss and Gerlach236 used a Pinner reaction to prepare a robust orthoester from cfr-cyclohexane-l,3,5-triol [Scheme 2.114]. The method is obviously limited to substrates that can withstand the harsh acidic conditions required in the first step. [Pg.110]

In a recent pubhcation the nitrile (EWG = CN) variant [ 126] of this chemistry was performed in water by applying N,N-diethylaminopropylated sihca gel as heterogeneous catalyst [ 128]. Another variant of this reaction sequence, leading to chiral sulfinylated enones, has been developed by Llera [ 129] employing the enantiomerically pure geminal bis(sulfoxide) 208 (Scheme 54). This bis(sulfoxide) was prepared from (-)-p-toluenesulfinic acid menthyl ester [100], as described by Kunieda [130]. Later this procedure was improved to increase the yield from 35 to 91% [13,131]. Treatment of 208 with enolizable aldehydes or ketones, in the presence of piperidine as a base and thiophile, initiated a reaction cascade involving a condensation step (to 210), a proton shift to allylic sulfoxide 211, and a [2,3]-0-shift followed by a piperidine-mediated desulfuration delivering the alcohols 212 as isomeric mixtures. Oxidation of the latter compounds (one of the R = H) led to enantiomerically pure E-y-oxo vinyl sulfoxides 213. [Pg.31]


See other pages where Nitriles, preparation from alcohols is mentioned: [Pg.513]    [Pg.587]    [Pg.288]    [Pg.782]    [Pg.782]    [Pg.1762]    [Pg.587]    [Pg.782]    [Pg.218]    [Pg.48]    [Pg.340]    [Pg.55]    [Pg.454]    [Pg.344]    [Pg.218]    [Pg.202]    [Pg.177]    [Pg.7]    [Pg.29]    [Pg.141]    [Pg.211]    [Pg.193]    [Pg.9]    [Pg.67]    [Pg.16]    [Pg.590]    [Pg.312]    [Pg.100]    [Pg.252]    [Pg.41]   
See also in sourсe #XX -- [ Pg.151 ]




SEARCH



Alcohols from nitriles

Alcohols preparation

Alcohols, preparation from

From nitriles

Nitriles preparation

Nitriles, preparation from

© 2024 chempedia.info