Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nitrating mixture carbonyl

The paper discusses two types of reaction involving metal complexes, and it is postulated that each proceeds by an initial free-radical step. In reactions between metal carbonyls and N2O4—NO2 mixtures, the nature of the product depends upon the phase in which the reaction is carried out. In the liquid phase, where the predominant equilibrium is N204 N0+ + NO3-, metal nitrates or carbonyl nitrates are formed in the gas phase, where the equilibrium is N2O4 2NO2/ nitrites or their derivatives are produced. Reactions of Mn2(CO) o Fe(CO)5, Co2(CO)3, and Ni(CO)4 are discussed. Anhydrous metal nitrates in which the nitrate group is covalently bonded to the metal have enhanced reactivity. This is believed to result from the dissociation M—O—N02 M—O + NO2 This can explain the solution properties of beryllium nitrates, and the vigorous (even explosive) reaction of anhydrous copper nitrate with diethyl ether. [Pg.131]

At room temperature, Htde reaction occurs between carbon dioxide and sodium, but burning sodium reacts vigorously. Under controUed conditions, sodium formate or oxalate may be obtained (8,16). On impact, sodium is reported to react explosively with soHd carbon dioxide. In addition to the carbide-forrning reaction, carbon monoxide reacts with sodium at 250—340°C to yield sodium carbonyl, (NaCO) (39,40). Above 1100°C, the temperature of the DeviHe process, carbon monoxide and sodium do not react. Sodium reacts with nitrous oxide to form sodium oxide and bums in nitric oxide to form a mixture of nitrite and hyponitrite. At low temperature, Hquid nitrogen pentoxide reacts with sodium to produce nitrogen dioxide and sodium nitrate. [Pg.163]

A facile method for the oxidation of alcohols to carbonyl compounds has been reported by Varma et al. using montmorillonite K 10 clay-supported iron(III) nitrate (clayfen) under solvent-free conditions [100], This MW-expedited reaction presumably proceeds via the intermediacy of nitrosonium ions. Interestingly, no carboxylic acids are formed in the oxidation of primary alcohols. The simple solvent-free experimental procedure involves mixing of neat substrates with clayfen and a brief exposure of the reaction mixture to irradiation in a MW oven for 15-60 s. This rapid, ma-nipulatively simple, inexpensive and selective procedure avoids the use of excess solvents and toxic oxidants (Scheme 6.30) [100]. Solid state use of clayfen has afforded higher yields and the amounts used are half of that used by Laszlo et al. [17,19]. [Pg.197]

In a small beaker oxime (10 mmol) and freshly prepared clayfen reagent (6.6 mmol of iron(III) nitrate) were mixed together to make an intimate mixture. The beaker was placed in a household microwave oven for the specified time. The residue was washed with CH2C12 (10 mL) and filtered. The filtrate was evaporated to dryness to afford the corresponding carbonyl compound. [Pg.415]

A copper-chromium oxide on pumice catalyst has particular value for the dehydrogenation of primary and secondary alcohols to the corresponding carbonyl compounds (see Section 5.6.1, p. 581). Dissolve 10.4g of barium nitrate (AnalaR) in 280 ml of water at about 80 °C and add to this hot solution 87 g of copper(n) nitrate trihydrate (AnalaR) stir the mixture and heat until a homogeneous solution results. Prepare a solution of 50.4 g of recrystallised ammonium dichromate in a mixture of 200 ml of water and 75 ml of concentrated ammonia solution (d 0.880). To the ammonium chromate solution at 25-30 °C add the hot (80 °C) nitrate solution in a thin stream with stirring. Allow the mixture to cool and filter off the yellowish-brown precipitate with suction press with a glass stopper and suck as dry as possbile. Transfer the... [Pg.427]

With these compounds the presence of the halogen will have been detected in the tests for elements. Most acid halides undergo ready hydrolysis with water to give an acidic solution and the halide ion produced may be detected and confirmed with silver nitrate solution. The characteristic carbonyl adsorption at about 1800 cm -1 in the infrared spectrum will be apparent. Acid chlorides may be converted into esters as a confirmatory test to 1 ml of absolute ethanol in a dry test tube add 1 ml of the acid chloride dropwise (use a dropper pipette keep the mixture cool and note whether any hydrogen chloride gas is evolved). Pour into 2 ml of saturated salt solution and observe the formation of an upper layer of ester note the odour of the ester. Acid chlorides are normally characterised by direct conversion into carboxylic acid derivatives (e.g. substituted amides) or into the carboxylic acid if the latter is a solid (see Section 9.6.16, p. 1265). [Pg.1212]

One of the effective reagents for highly chemoselective dithioacetalization of carbonyl compounds is ceric ammonium nitrate (CAN) in chloroform. When a mixture of benzaldehyde and acetophenone was allowed to react with 1,2-ethanedithiol and a catalytic amount of CAN, the 1,3-dithiolane derived from the aldehyde was obtained in 84% yield while the ketone was recovered unchanged. It is noteworthy that aromatic ketones, 7-lactones, and acylic ketones did not react at all under these conditions and even at elevated temperatures for longer reaction times <1995T7823>. [Pg.1021]


See other pages where Nitrating mixture carbonyl is mentioned: [Pg.378]    [Pg.53]    [Pg.504]    [Pg.178]    [Pg.86]    [Pg.334]    [Pg.949]    [Pg.59]    [Pg.104]    [Pg.312]    [Pg.100]    [Pg.883]    [Pg.715]    [Pg.157]    [Pg.157]    [Pg.592]    [Pg.262]    [Pg.317]    [Pg.602]    [Pg.707]    [Pg.92]    [Pg.120]    [Pg.104]    [Pg.602]    [Pg.341]    [Pg.228]    [Pg.286]    [Pg.53]    [Pg.707]    [Pg.549]    [Pg.92]    [Pg.178]    [Pg.129]    [Pg.133]    [Pg.90]    [Pg.1810]    [Pg.786]   
See also in sourсe #XX -- [ Pg.122 ]

See also in sourсe #XX -- [ Pg.122 ]

See also in sourсe #XX -- [ Pg.122 ]




SEARCH



Carbonyl nitrate

Nitrating mixture

Nitration Mixture

© 2024 chempedia.info