Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Niobium oxidation states

Figure 1.3 Left. Detailed view of the Nb K-edge XANES data of a pyridine salt of niobium-exchanged molybdo(vanado)phosphoric acid (NbPMo fVJpry) as a function of temperature [31]. A change in niobium oxidation state, from Nb5+ to Nb4+, is identified between 350 and 420°C by a relative increase in absorption about 19.002 keV, and can be connected with the activation of the catalyst for light alkane oxidation. Right. Radial Fourier-transform EXAFS function for the NbPMo (V)pyr sample heated to 420°C [31 ]. The two peaks correspond to the Nb-O (1.5 A) and Nb-Mo (3 A) distances in the heteropolymolybdate fragments presumed to be the active phase for alkane oxidation. (Reproduced with permission from Elsevier.)... Figure 1.3 Left. Detailed view of the Nb K-edge XANES data of a pyridine salt of niobium-exchanged molybdo(vanado)phosphoric acid (NbPMo fVJpry) as a function of temperature [31]. A change in niobium oxidation state, from Nb5+ to Nb4+, is identified between 350 and 420°C by a relative increase in absorption about 19.002 keV, and can be connected with the activation of the catalyst for light alkane oxidation. Right. Radial Fourier-transform EXAFS function for the NbPMo (V)pyr sample heated to 420°C [31 ]. The two peaks correspond to the Nb-O (1.5 A) and Nb-Mo (3 A) distances in the heteropolymolybdate fragments presumed to be the active phase for alkane oxidation. (Reproduced with permission from Elsevier.)...
The data concerning the oxidation state of niobium and the coordination properties of its species in molten halides are incomplete and often contradictory. There is no doubt about the existence of niobium(IV) and (V) species in molten niobium-containing alkali chloride-based mixtures. The only question concerns the stability of NbClg" complex ions under an inert atmosphere. The other disputed moment involves the value of the lowest niobium oxidation state stable in chloride melts. According to the different points of view niobium-containing melts held in contact with the metal can contain Nb ", Nb + or Nb" + ions [1]. [Pg.243]

Thus, the obtained experimental information concerning niobium speciation and coordination properties in chloride melts is incomplete and contradictive, especially in the case of lower niobium oxidation state complexes, and a further investigation of this problem is required. [Pg.244]

Additional experiments are required to determine the potential range values where particular niobium oxidation state species can be stabilised. [Pg.252]

Some metals used as metallic coatings are considered nontoxic, such as aluminum, magnesium, iron, tin, indium, molybdenum, tungsten, titanium, tantalum, niobium, bismuth, and the precious metals such as gold, platinum, rhodium, and palladium. However, some of the most important poUutants are metallic contaminants of these metals. Metals that can be bioconcentrated to harmful levels, especially in predators at the top of the food chain, such as mercury, cadmium, and lead are especially problematic. Other metals such as silver, copper, nickel, zinc, and chromium in the hexavalent oxidation state are highly toxic to aquatic Hfe (37,57—60). [Pg.138]

The most common oxidation state of niobium is +5, although many anhydrous compounds have been made with lower oxidation states, notably +4 and +3, and Nb can be reduced in aqueous solution to Nb by zinc. The aqueous chemistry primarily involves halo- and organic acid anionic complexes. Virtually no cationic chemistry exists because of the irreversible hydrolysis of the cation in dilute solutions. Metal—metal bonding is common. Extensive polymeric anions form. Niobium resembles tantalum and titanium in its chemistry, and separation from these elements is difficult. In the soHd state, niobium has the same atomic radius as tantalum and essentially the same ionic radius as well, ie, Nb Ta = 68 pm. This is the same size as Ti ... [Pg.20]

Table 22.2 Oxidation states and stereochemistries of compounds of vanadium, niobium and tantalum... Table 22.2 Oxidation states and stereochemistries of compounds of vanadium, niobium and tantalum...
Niobium and tantalum provide no counterpart to the cationic chemistry of vanadium in the -t-3 and -t-2 oxidation states. Instead, they form a series of cluster compounds based... [Pg.980]

The heavier metal tantalum is distinctly less inclined than niobium to form oxides in lower oxidation states. The rutile phase TaOz is known but has not been studied, and a cubic rock-salt-type phase TaO with a narrow homogeneity range has also been reported but not yet fully characterized. TazOs has two well-established polymorphs which have a reversible transition temperature at 1355°C but the detailed structure of these phases is too complex to be discussed here. [Pg.983]

The known halides of vanadium, niobium and tantalum, are listed in Table 22.6. These are illustrative of the trends within this group which have already been alluded to. Vanadium(V) is only represented at present by the fluoride, and even vanadium(IV) does not form the iodide, though all the halides of vanadium(III) and vanadium(II) are known. Niobium and tantalum, on the other hand, form all the halides in the high oxidation state, and are in fact unique (apart only from protactinium) in forming pentaiodides. However in the -t-4 state, tantalum fails to form a fluoride and neither metal produces a trifluoride. In still lower oxidation states, niobium and tantalum give a number of (frequently nonstoichiometric) cluster compounds which can be considered to involve fragments of the metal lattice. [Pg.988]

Niobium and Ta also form a number of polynuclear halides in which the metal has non-integral oxidation states (see text). [Pg.989]

Ammonium hydrofluoride is relatively stable, even in the molten state. In addition to being in contact with tantalum or niobium oxide, the compound will initiate the fluorination process yielding complex tantalum or niobium fluoride compounds. There is no doubt that thermal treatment of the hydroxides at high temperatures and/or at a high temperature rate leads to the enhancement of the defluorination processes, which in turn results in an increase in fluorine content of the final oxides. [Pg.302]

Other ions which are reduced in the reductor to a definite lower oxidation state are those of titanium to Ti3+, chromium to Cr2+, molybdenum to Mo3+, niobium to Nb3+, and vanadium to V2 +. Uranium is reduced to a mixture of U3 + and U4+, but by bubbling a stream of air through the solution in the filter flask for a few minutes, the dirty dark-green colour changes to the bright apple-green colour characteristic of pure uranium(I V) salts. Tungsten is reduced, but not to any definite lower oxidation state. [Pg.412]

In contrast to chloride compounds, niobium oxides have a VEC of 14 electrons, due to an overall anti-bonding character of the a2u state, caused by a stronger Nb-O anti-bonding contribution. In some cases, the VEC cannot be determined unambiguously due to the uncertainty in the electron distribution between the clusters and additional niobium atoms present in the majority of the structures. The 14-electron compounds exhibit semiconducting properties and weak temperature-independent paramagnetism. Unlike niobium chlorides, the oxides do not exhibit a correlation between the electronic configuration and intra-cluster bond distances. [Pg.84]

Many carbonyl and carbonyl metallate complexes of the second and third row, in low oxidation states, are basic in nature and, for this reason, adequate intermediates for the formation of metal— metal bonds of a donor-acceptor nature. Furthermore, the structural similarity and isolobal relationship between the proton and group 11 cations has lead to the synthesis of a high number of cluster complexes with silver—metal bonds.1534"1535 Thus, silver(I) binds to ruthenium,15 1556 osmium,1557-1560 rhodium,1561,1562 iron,1563-1572 cobalt,1573 chromium, molybdenum, or tungsten,1574-1576 rhe-nium, niobium or tantalum, or nickel. Some examples are shown in Figure 17. [Pg.988]

A set of oxygen donor atoms, providing both a and tt donation to a metal center, is not appropriate to stabilize any low oxidation state of a metal.19 This is, however, a synthetic advantage since very reactive, unstable, low-valent metalla-calix[4]arenes can be generated in situ and intercepted by an appropriate substrate. In the absence of a suitable substrate, the reactive fragment, however, can collapse to form metal-metal bonded dimers. The formation of metal-metal bonds has been, however, so far observed in the case of Group V and VI metals only. The most complete sequence so far reported has been for tungsten, molybdenum, and niobium. [Pg.172]

Niobium in its +5 oxidation state forms both oxygen and halogen compounds (Niobium in oxidation states of+2, +3 and +4 also forms compounds—for example, niobium(ll) dioxide and niobium(IV) tetraoxide) ... [Pg.127]

Several studies have been concerned with the chemistry of the + ni oxidation state of these elements, and the characterization of the first tantalum(iii) compounds has been claimed. The diamagnetic dimer [TaCl3(MeCN)2]2 has been prepared and used to obtain [TaClafphen)], [TaCljfbipy)], and tris-(dibenzoylmethanato)tantalum(ni). NbFa has been characterized as the product of the reaction of Nb and NbF (1 1) at 750 °C under pressure. Electrolytic reduction of niobium(v) in ethanol,formamide, and dimethylformamide can afford preparative concentrations of niobium(iii) and the new compound niobium(iii) trilactate has been obtained from ethanol. [Pg.59]

This consideration also applies to 8-vertex clusters with interstitial atoms. The most spherical 8-vertex deltahedron, namely the bisdisphenoid (Eig. 1), appears to have too small a cavity for an interstitial transition metal. Plowever, the square antiprism has two fewer edges and can be partially flattened to make a puckered eight-membered ring, which can accommodate a transition metal in the center (Pig. 8). Known clusters of this type include M E8" (M = Cr [98], Mo [98], Nb [99] E = As, Sb n = 2,3 for Cr and Mo = 3 for Nb). The transition metal in such structures can be considered to be eight-coordinate with flattened square antiprismatic coordination. The Eg ring (E = As, Sb) can be considered formally to be an octaanion, isoelectronic with the common form of elemental sulfur, Sg. Thus in M Eg (M = Cr, Mo E = As, Sb), the central transition metal has the formal oxidation state of +6. Similarly in Nb Eg , the central niobium atom has its d formal oxidation state of +5. [Pg.19]

Clearly, U is the biggest number in the cycle and is the main driving force for the formation of ionic compounds. Nevertheless, the other factors can tip the balance one way or another. For example, AHSub is particularly large for the transition metals niobium, tantalum, molybdenum, tungsten, and rhenium, with the result that, in their lower oxidation states, they do not form simple ionic compounds such as ReCl3 but rather form compounds that contain clusters of bonded metal atoms (in this example, Re3 clusters are involved, so the formula is better written ResClg). [Pg.91]

Indicate the position of vanadium, niobium, and tantalum in Mendeleev s periodic table of the elements, the electron configurations and size of their atoms, and their oxidation states. [Pg.210]


See other pages where Niobium oxidation states is mentioned: [Pg.5]    [Pg.1585]    [Pg.246]    [Pg.275]    [Pg.385]    [Pg.123]    [Pg.979]    [Pg.991]    [Pg.732]    [Pg.177]    [Pg.177]    [Pg.297]    [Pg.298]    [Pg.241]    [Pg.83]    [Pg.40]    [Pg.89]    [Pg.49]    [Pg.328]    [Pg.213]    [Pg.48]    [Pg.23]    [Pg.783]    [Pg.23]    [Pg.188]    [Pg.268]    [Pg.85]    [Pg.82]    [Pg.49]    [Pg.163]   
See also in sourсe #XX -- [ Pg.994 ]

See also in sourсe #XX -- [ Pg.994 ]




SEARCH



Niobium complexes oxidation states

Niobium lower oxidation states

Oxidation states niobium and tantalum

Reduction of Uranyl(VI) species by low oxidation state niobium ions

© 2024 chempedia.info