Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nickel macrocyclic complexes reactions

Nickel-allyl complexes prepared from Ni(CO)4 and allyl bromides are useful for the ole-fination of alkyl bromides and iodides (E.J. Corey, 1967 B A.P. Kozikowski, 1976). The reaction has also been extended to the synthesis of macrocycles (E.J. Corey, 1967 C, 1972A). [Pg.42]

Macrocyclic complexes (continued) nickel(II), 44 93-94 eatalysis, 44 119-125 configurational isomerization, 44 126 electrochemical properties, 44 112-113 electronic absorption spectra, 44 108-112 reactions, 44 118-119 square-planar and octahedral species, 44 116-118... [Pg.168]

CO2 molecule, or Mg + and CO2 play the role of oxide acceptor to form water, carbonate, and MgC03, respectively [38]. The reactions of the iron carboxylate with these Lewis acids are thought to be fast and not rate determining. For the cobalt and nickel macrocyclic catalysts, CO2 is the ultimate oxide acceptor with formation of bicarbonate salts in addition to CO, but it is not clear what the precise pathway is for decomposition of the carboxylate to CO [33]. The influence of alkali metal ions on CO2 binding for these complexes was discussed earlier [15]. It appears the interactions between bound CO2 and these ions are fast and reversible, and one would presume that reactions between protons and bound CO2 are rapid as well. [Pg.213]

Binuclear complexes have also been obtained by the electrophilic substitution reaction of [Ni(Me2[Z]dienatoN4)]+ (Z = 13,14) with -substituted benzoyl chlorides (Scheme 53), 2791 A series of dimeric nickel(II) complexes of type (385) has been synthesized as outlined in Scheme 54.2792 In the complex with m-xylene bridges the two nickel(II) atoms are 1360 pm apart, separated by the cavity of the pair of 16-membered macrocyclic ligands. [Pg.255]

Nickel(II) complexes with a variety of tetraaza macrocycles have been found to undergo facile one-electron redox reactions. Such reactions have been accomplished by means of both chemical and electrochemical procedures. The kinetic inertness and thermodynamic stability of the tetraaza macrocyclic complexes of nickel(II) make them particularly suitable systems for the study of redox processes. A very extensive summary of the potentials for the redox reactions of nickel(II) complexes with a variety of macrocycles is given in ref. 2622. [Pg.267]

Nickel(II) complexes with cryptands are still rare. In general the encapsulation of nickel(II) in this type of macrocyclic ligand makes the complexes extraordinarily resistant to dissociation and substitution reactions. [Pg.270]

Neutral nickel(II) complexes with a number of deprotonated porphyrins have been prepared in most cases by the direct reaction of a nickel salt, usually Ni(ac)2-4H20, with the preformed diacid macrocycle, using media such as DMF, MeC02H or PhCl at refluxing temperature. Recently, the template synthesis of the complex with tetraalkylporphyrins has been reported (Scheme 61).2883 On the other hand the condensation reaction of 1,3,4,7-tetraalkylisoindole and nickel acetate tetrahydrate gives the [Ni(omtbp)] complex (omtbp = octamethyltetrabenzoporphyrinate dianion), 2884... [Pg.274]

Coordinated secondary amines can also be alkylated, but only after deprotonation by a strong base generates a suitable nucleophile. Work on rhodium(III) complexes of ethylenediamine12 has been extended to nickel(II) complexes of various fully saturated macrocycles such as cyclam (Scheme l).13,14 The methylated cyclam complex is kinetically inert, unlike the isomer with all four methyl groups on the same side of the ring, which is obtained on reaction of the preformed tetramethyl cyclam with nickel ions. [Pg.417]

One of the most spectacular and useful template reactions is the Curtis reaction , in which a new chelate ring is formed as the result of an aldol condensation between a methylene ketone or inline and an imine salt. The initial example of this reaction was the formation of a macrocyclic nickel(II) complex from tris(l,2-diaminoethane)nickel(II) perchlorate and acetone (equation 53).182 The reaction has been developed by Curtis and numerous other workers and has been reviewed.183 In mechanistic terms there is some circumstantial evidence to suggest that the nucleophile is an uncoordinated aoetonyl carbanion which adds to a coordinated imine to yield a coordinated amino ketone (equation 54). If such a mechanism operates then the template effect is largely, if not wholly, thermodynamic in nature, as described for imine formation. Such a view is supported by the fact that the free macrocycle salts can be produced by acid catalysis alone. However, this fact does not... [Pg.449]

A great variety of aza macrocycle complexes have been formed by condensation reactions in the presence of a metal ion, often termed template reactions . The majority of such reactions have inline formation as the ring-closing step. Fourteen- and, to a lesser extent, sixteen-membered tetraaza macrocycles predominate, and nickel(II) and copper(II) are the most widely active metal ions. Only a selection of the more general types of reaction can be described here, and some closely related, but non metal-ion-promoted, reactions will be included for convenience. The reactions are classified according to the nature of the carbonyl and amine reactants. [Pg.900]

Metal template syntheses of complexes incorporating the p-amino imine fragment have been introduced by Curtis as a result of his discovery that tris(l,2-diaminoethane)nickel(II) perchlorate reacted slowly with acetone to yield the macrocyclic complexes (40) and (41) (equation 8).81-83 In this macrocyclic structure the bridging group is diacetone amine imine, arising from the aldol condensation of two acetone molecules. This reaction is widely general, in the same way that the aldol reaction is, and can be applied to many types of amine complexes. The subject has been reviewed in detail with respect to macrocyclic complexes by Curtis.84... [Pg.162]

Reaction of bis(l,2-diaminoethane)nickel(II) perchlorate with acetone allows the isolation of the P-amino ketone complex (42), which can be converted in pyridine to the trans macrocyclic complex (41). A similar reaction occurs with methyl ethyl ketone (Scheme 7).85... [Pg.163]

Template reactions between malonaldehydes and diamines in the presence of copper(II), nickel(II) or cobalt(II) salts yield neutral macrocyclic complexes (equation 15).99-102 Both aliphatic102 and aromatic101 diamines can be used. In certain cases, non-macrocyclic intermediates can be isolated and subsequently converted into unsymmetrical macrocyclic complexes by reaction with a different diamine (Scheme ll).101 These methods are more versatile and more convenient than an earlier template reaction in which propynal replaces the malonaldehyde (equation 16).103 This latter method can also be used for the non-template synthesis of the macrocyclic ligand in relatively poor yield. A further variation on this reaction type allows the use of an enol ether (vinylogous ester), which provides more flexibility with respect to substituents (equation 17).104 The approach illustrated in equation (15), and Scheme 11 can be extended to include reactions of (3-diketones. The benzodiazepines, which result from reaction between 1,2-diaminobenzenes and (3-diketones, can also serve as precursors in the metal template reaction (Scheme 12).101 105 106 The macrocyclic complex product (46) in this sequence, being unsubstituted on the meso carbon atom, has been shown to undergo an electrochemical oxidative dimerization (equation 18).107... [Pg.166]

While most of the work has been done commencing with the nickel(II) complex (51), the chemistry is quite general. The enamine complex (53) can be deprotonated on nitrogen to yield the neutral imine complex (55). Even the protons of the methyl group in the enol ether complex (52) are sufficiently acidic for the formation of the neutral complex (54). Both of these reactivity features occur together in the alkylation reaction shown in Scheme 18.126 The macrocyclic rings in complexes such as (52), (53) and especially the more flexible complex (56) are not planar but bowl-... [Pg.169]

Propano-linked macrocyclic complexes (69) have been shown to undergo oxidative dehydrogenation with ease under mild conditions (equation 27).157>162 This reaction occurs for nickel(II), copper(II) and cobalt(II) complexes and leads to cobalt(III) dibenzocorromins , which are simple models of the vitamin B12 coenzyme nucleus.163 Macrocyclic complexes containing this ligand chromophore had already been prepared by a direct metal template method (Scheme 29).164 165 However, the oxidative dehydrogenation route offers greater experimental certainty and variety. [Pg.176]

The monohydrazones of a-diketones react with acetone and nickel(II) acetate to give azine complexes (82), which can be converted to macrocyclic complexes by reaction with 1,2-diamino-ethane, but not 1,3-diaminopropane (Scheme 34).179-181... [Pg.180]

The reaction of the nickel(II) perchlorate complex (89) with acetone and related ketones yields simple hydrazone complexes rather than macrocyclic complexes resulting from a Curtis-type reaction. Acetylacetone also fails to bridge the bis(hydrazine) and instead yields a pyrazole derivative (Scheme 37).197 198 In contrast to this result, 1,4-dihydrazinophthalazine undergoes a template reaction with 2,2-dimethoxypropane, a source of acetone, in the presence of nickel(II) fluoroborate and a trace of fluoroboric acid (Scheme 38).199... [Pg.183]

An extensive series of neutral macrocyclic complexes, mainly of nickel(II), copper(II), platinum(II) and palladium(II), has been developed by Dziomko and coworkers. The cyclization step in the template reaction is a nucleophilic aromatic substitution of an arylamine on to a haloaryl azo compound. A variety of aryl and heteroaryl rings can be incorporated in different combinations. For instance, a diaminoazo compound can be combined with a dihaloazo compound (Scheme 58).246 247 Another synthetic strategy involves the dimerization of an aminohaloazo compound and leads to more symmetrical macrocyclic complexes (Scheme 59).248 249 Most recently, dihalodiazo compounds have been synthesized from dihydrazines and pyrazolinediones and undergo template reactions with simple 1,2-diamines (Scheme 60).249 250... [Pg.196]

Model compound studies have shown the importance of porphyrin macrocycle basicity, resulting from electron-withdrawing substituents and metal ligands, on the reducibility and susceptibility of the central metal to reaction. Similar insight into the differences in relative basicity of vanadium- and nickel-containing complexes found in petroleum may therefore be valuable in rationalizing the observed effects and predicting demetallation activity. [Pg.193]

More recently, Rudolph et al. was able to reduce C02 to oxalate with faradaic efficiencies approaching 100% with their most active and stable complex [102]. These authors examined a variety of macrocyclic nickel chelate complexes with various substituent groups on the ring in acetonitrile solution. Whilst it is interesting that the group was able to produce oxalate catalyzed by a metal complex, the potentials required for reduction were —1.9 to —2.2 V (versus SCE), similar to the potential required for the direct reduction of C02 in aprotic solvent (—2.21 V versus SCE). The very negative potentials in this reaction highlight the overall theme of the electrochemical reduction of C02. [Pg.305]

The metal ion does, however, introduce a new subtlety into these reductions. The reduction of the two imine groups in the nickel(n) complex 4.10 is readily achieved with Na[BH4], The free tetraamine ligand would be expected to exhibit a facile pyramidal inversion at each nitrogen atom, whereas in the nickel(n) complex this inversion is not possible without significant weakening (or breaking) of the Ni-N bonds. In macrocyclic complexes it is very often found that the complex obtained by the reduction of a co-ordinated imine does not possess the same stereochemistry as that obtained by the direct reaction of the free amine with metal ion. [Pg.78]

The analogy between imines and carbonyls was introduced earlier, and just as 1,3-dike-tonate complexes undergo electrophilic substitution reactions at the 2-position, so do their nitrogen analogues. Reactions of this type are commonly observed in macrocyclic ligands, and many examples are known. Electrophilic reactions ranging from nitration and Friedel-Crafts acylation to Michael addition have been described. Reactions of 1,3-diimi-nes and of 3-iminoketones are well known. The reactions are useful for the synthesis of derivatised macrocyclic complexes, as in the preparation of the nickel(n) complex of a nitro-substituted ligand depicted in Fig. 5-12. [Pg.95]

In addition to the charge control over the reaction discussed above, there is also a marked element of conformational control over alkylation reactions. This is seen clearly in the methylation of the nickel(n) complex of the tetraaza macrocyclic ligand, cyclam (Fig. 5-32). Reaction of the nickel complex with methylating agents allows the formation of a A, A V",A "-tetramethylcyclam complex. In this product, each of the four nitrogen atoms is four-co-ordinate and tetrahedral, and specific configurations are associated with each. Of the four methyl groups in the product, two are oriented above the square plane about the nickel, and two below it. [Pg.105]

Transamination reactions of this type have found some synthetic application. The synthesis of the nickel(n) complex of a macrocycle indicated in Fig. 5-58 clearly involves... [Pg.117]

As mentioned above, reactions of this type have been widely used in the synthesis of macrocyclic ligands. Indeed, some of the earliest examples of templated ligand synthesis involve thiolate alkylations. Many of the most important uses of metal thiolate complexes in these syntheses utilise the reduced nucleophilicity of a co-ordinated thiolate ligand. The lower reactivity results in increased selectivity and more controllable reactions. This is exemplified in the formation of an A -donor ligand by the condensation of biacetyl with the nickel(n) complex of 2-aminoethanethiol (Fig. 5-78). The electrophilic carbonyl reacts specifically with the co-ordinated amine, to give a complex of a new diimine ligand. The beauty of this reaction is that the free ligand cannot be prepared in a metal-free reac-... [Pg.129]


See other pages where Nickel macrocyclic complexes reactions is mentioned: [Pg.52]    [Pg.386]    [Pg.483]    [Pg.488]    [Pg.208]    [Pg.167]    [Pg.168]    [Pg.176]    [Pg.94]    [Pg.100]    [Pg.38]    [Pg.227]    [Pg.249]    [Pg.250]    [Pg.267]    [Pg.204]    [Pg.270]    [Pg.91]    [Pg.160]    [Pg.166]    [Pg.293]   
See also in sourсe #XX -- [ Pg.118 , Pg.119 , Pg.130 , Pg.131 , Pg.139 , Pg.140 ]

See also in sourсe #XX -- [ Pg.118 , Pg.119 , Pg.130 , Pg.131 , Pg.139 , Pg.140 ]




SEARCH



Complexes macrocycles

Macrocycle complexes

Macrocyclic complexes

Macrocyclization reactions

Nickel complexes macrocycles

Nickel macrocycle

Nickel macrocyclic complexes

Nickel-macrocycle complex

Reaction nickel

Square-planar nickel macrocyclic complexes, reactions

Template condensation reaction, nickel macrocyclic complexes

© 2024 chempedia.info