Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nickel dioxide preparation

The existence of nickel dioxide was first indicated by Dufau,10 who prepared barium nickelite, Ba0.2Ni02, by igniting nickel oxide and barium carbonate in an electric arc. The nickelite resulted as dark-coloured crystals of density 4-8 at 20° C. and attacked by water. [Pg.117]

Nickel oxide prepared at 250° [NiO(250°)] presents a greater adsorption affinity toward carbon monoxide at 30° than NiO(200°) [at 2 torr, 4.5 cm /gm on NiO(200°), 5.5 cm /gm on NiO(250°)] and the differential heats of adsorption on NiO(250°) (Fig. 12) decrease more progressively than on NiO(200°) (Fig. 11). The initial heat of adsorption is lower on NiO(250°) (29 kcal/mole) than on NiO(200°) (42 kcal/mole). However, on the latter catalyst, surface oxygen ions react with carbon monoxide to give a small quantity (0.3 cm /gm) of adsorbed carbon dioxide, which accounts for the high initial heat of adsorption of carbon monoxide (42 kcal/mole) on NiO(200°). Because of the higher temperature of its... [Pg.192]

Sulfolane (tetramethylenesulfone) [126-33-0] M 120.2, m 28.5 , b 153-154 /18mm, 285 /760mm, d 1.263, n 1.4820. Prepared commercially by Diels-Alder reaction of 1,3-butadiene and sulfur dioxide, followed by Raney nickel hydrogenation. The principle impurities are water, 3-sulfolene, 2-sulfolene and 2-isopropyl sulfolanyl ether. It is dried by passage through a column of molecular sieves. Distd... [Pg.354]

Nickel peroxide is a solid, insoluble oxidant prepared by reaction of nickel (II) salts with hypochlorite or ozone in aqueous alkaline solution. This reagent when used in nonpolar medium is similar to, but more reactive than, activated manganese dioxide in selectively oxidizing allylic or acetylenic alcohols. It also reacts rapidly with amines, phenols, hydrazones and sulfides so that selective oxidation of allylic alcohols in the presence of these functionalities may not be possible. In basic media the oxidizing power of nickel peroxide is increased and saturated primary alcohols can be oxidized directly to carboxylic acids. In the presence of ammonia at —20°, primary allylic alcohols give amides while at elevated temperatures nitriles are formed. At elevated temperatures efficient cleavage of a-glycols, a-ketols... [Pg.248]

The [2-I-2-I-2] cycloaddition reaction of diynes 40 and carbon dioxide 41 were successfully catalysed by a NHC-nickel (Scheme 5.12) [15]. The NHC-Ni complex was prepared in situ from [NiCCOD) ] and two equivalents of carbene. Pyrones 42 were obtained in excellent yields at atmospheric pressure of CO and mild reaction conditions. [Pg.138]

Pyridine compounds 45 can also be produced by the NHC-Ni catalysed cycloaddition between nitriles 43 and diynes 44 (Scheme 5.13) [16]. The SIPr carbene was found to be the best ligand for the nickel complex in this reaction. The reaction required mild reaction conditions and low catalyst loadings, as in the case of cycloaddition of carbon dioxide. In addition to tethered aUcynes (i.e. diynes), pyridines were prepared from a 3-component coupling reaction with 43 and 3-hexyne 23 (Scheme 5.13). The reaction of diynes 44 and nitriles 43 was also catalysed by a combination of [Ni(COD)J, NHC salts and "BuLi, which generates the NHC-Ni catalyst in situ. The pyridines 45 were obtained with comparable... [Pg.138]

One of the conclusions deduced from the thermochemical cycle 2 in Table V, for instance, is that in the course of the catalytic combustion of carbon monoxide at 30°C, the most reactive surface sites of gallium-doped nickel oxide are inhibited by the reaction product, carbon dioxide. This conclusion ought to be verified directly by the calorimetric study of the reaction. Small doses of the stoichiometric reaction mixture (CO + IO2) were therefore introduced successively in the calorimetric cell of a Calvet microcalorimeter containing a freshly prepared sample of gallium-doped... [Pg.254]

Nickel(O) triphenylphosphine can be used to couple aryl halides and alkenes to synthesize substituted olefins [149], 1,2-bis[(di-2-propylphosphino)benzene]nick-el(0) can be used to couple aryl halides [150], and l,2-bis[(diphenylphos-phino)ethane]nickel(0) can be used to prepare benzoic acid from bromobenzene in the presence of carbon dioxide [151]. [Pg.229]

The synthesis of 1-aminodibenzothiophene by reduction of the 1-nitro compound with hydrogen and Raney nickel (57%) completes the series of monoaminodibenzothiophenes. A synthesis of 2-amino-dibenzothiophene 5,5-dioxide from the corresponding 2-bromo compound has been described involving heating with ammonium hydroxide and copper at 200° (66 /o). 8-Bromo-2-aminodibenzothiophene has been prepared by catalytic reduction of the corresponding nitro compound... [Pg.263]

Nickel oxide is used in the ceramic industry for making frit, ferrites, and coloring porcelain. The oxide in sinter form is used in the production of nickel-steel alloys. It supplies oxygen to the melt for removal of carbon as carbon dioxide. Some other important uses of nickel oxide include preparation of many nickel salts, specialty chemicals, and nickel catalysts. It also is used as an electrode in fuel cells. [Pg.619]

Rubidium acid salts are usually prepared from rubidium carbonate or hydroxide and the appropriate acid in aqueous solution, followed by precipitation of the crystals or evaporation to dryness. Rubidium sulfate is also prepared by the addition of a hot solution of barium hydroxide to a boiling solution of rubidium alum until all the aluminum is precipitated. The pH of the solution is 7.6 when the reaction is complete. Aluminum hydroxide and barium sulfate are removed by filtration, and rubidium sulfate is obtained by concentration and crystallization from the filtrate. Rubidium aluminum sulfate dodecahydrate [7488-54-2] (alum), RbA SO 12H20, is formed by sulfuric acid leaching of lepidolite ore. Rubidium alum is more soluble than cesium alum and less soluble than the other alkali alums. Fractional crystallization of Rb alum removes K, Na, and Li values, but concentrates the cesium value. Rubidium hydroxide, RbOH, is prepared by the reaction of rubidium sulfate and barium hydroxide in solution. The insoluble barium sulfate is removed by filtration. The solution of rubidium hydroxide can be evaporated partially in pure nickel or silver containers. Rubidium hydroxide is usually supplied as a 50% aqueous solution. Rubidium carbonate, Rb2C03, is readily formed by bubbling carbon dioxide through a solution of rubidium hydroxide, followed by evaporation to dryness in a fluorocarbon container. Other rubidium compounds can be formed in the laboratory by means of anion-exchange techniques. Table 4 lists some properties of common rubidium compounds. [Pg.280]

Numerous methods for the synthesis of salicyl alcohol exist. These involve the reduction of salicylaldehyde or of salicylic acid and its derivatives. The alcohol can be prepared in almost theoretical yield by the reduction of salicylaldehyde with sodium amalgam, sodium borohydride, or lithium aluminum hydride by catalytic hydrogenation over platinum black or Raney nickel or by hydrogenation over platinum and ferrous chloride in alcohol. The electrolytic reduction of salicylaldehyde in sodium bicarbonate solution at a mercury cathode with carbon dioxide passed into the mixture also yields saligenin. It is formed by the electrolytic reduction at lead electrodes of salicylic acids in aqueous alcoholic solution or sodium salicylate in the presence of boric acid and sodium sulfate. Salicylamide in aqueous alcohol solution acidified with acetic acid is reduced to salicyl alcohol by sodium amalgam in 63% yield. Salicyl alcohol forms along with -hydroxybenzyl alcohol by the action of formaldehyde on phenol in the presence of sodium hydroxide or calcium oxide. High yields of salicyl alcohol from phenol and formaldehyde in the presence of a molar equivalent of ether additives have been reported (60). Phenyl metaborate prepared from phenol and boric acid yields salicyl alcohol after treatment with formaldehyde and hydrolysis (61). [Pg.293]

The methyl ester has also been obtained by esterification of cyclopentanecarboxylic acid.8 The acid, in turn, has been prepared by the Favorskii rearrangement,6 7 9-11 by the reaction of cyclopentyl Grignard reagent with carbon dioxide,12 by the carbonylation of cyclopentyl alcohol with nickel carbonyl13 or with formic acid in the presence of sulfuric acid,14 and by the hydrogenation of cyclopentene-1-carboxylic acid prepared from ethyl cyclopentanone-2-carboxylate 15 or from cyclopentanone cyanohydrin.16... [Pg.39]


See other pages where Nickel dioxide preparation is mentioned: [Pg.527]    [Pg.83]    [Pg.1922]    [Pg.3]    [Pg.9]    [Pg.208]    [Pg.297]    [Pg.218]    [Pg.280]    [Pg.293]    [Pg.337]    [Pg.535]    [Pg.156]    [Pg.110]    [Pg.576]    [Pg.160]    [Pg.37]    [Pg.193]    [Pg.378]    [Pg.218]    [Pg.242]    [Pg.242]    [Pg.279]    [Pg.167]    [Pg.83]    [Pg.128]    [Pg.97]    [Pg.611]    [Pg.931]    [Pg.816]    [Pg.216]    [Pg.255]    [Pg.404]    [Pg.723]    [Pg.171]    [Pg.311]   
See also in sourсe #XX -- [ Pg.37 , Pg.129 ]




SEARCH



Dioxide 383 preparation

Nickel preparation

© 2024 chempedia.info