Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sodium borohydride-Nickel chloride

Arene(tricarbonyl)chromium complexes, 19 Nickel boride, 197 to trans-alkenes Chromium(II) sulfate, 84 of anhydrides to lactones Tetrachlorotris[bis(l,4-diphenyl-phosphine)butane]diruthenium, 288 of aromatic rings Palladium catalysts, 230 Raney nickel, 265 Sodium borohydride-1,3-Dicyano-benzene, 279 of aryl halides to arenes Palladium on carbon, 230 of benzyl ethers to alcohols Palladium catalysts, 230 of carboxylic acids to aldehydes Vilsmeier reagent, 341 of epoxides to alcohols Samarium(II) iodide, 270 Sodium hydride-Sodium /-amyloxide-Nickel(II) chloride, 281 Sodium hydride-Sodium /-amyloxide-Zinc chloride, 281 of esters to alcohols Sodium borohydride, 278 of imines and related compounds Arene(tricarbonyl)chromium complexes, 19... [Pg.372]

Sodium borohydride-Palladium chloride. Sodium borohydride-Rhodium(lII) chloride. Sodium borohydride-Tin(II) chloride. Sodium cyanoborohydride. Sodium 9-cyano-9-hydrido-9-borabicyclo[3.3.1]nonane. Sodium dithionite. Sodium hydride-Sodium t-amyl oxide-Zinc chloride. Sodium trimethoxyborohydride. Tetra-/i-butylammonium borohydride. Tetra-n-butylammonium cyanoborohydride. Tetra-n-butylammonium octahydrotriborate. Tri-n-butyltin hydride. Triethoxy silane. Triisobutylaluminum-Bis(N-methyl-salicyclaldimine)nickel. Zinc borohydride. REDUCTIVE CYCLIZATION Cobaloximc(I). [Pg.311]

REDUCTION, REAGENTS Bis(N-methylpi-perazinyl)aluminum hydride. Borane-Di-methyl sulfide. Borane-Tetrahydrofurane. Borane-Pyridine. n-Butyllithium-Diisobu-tylaluminum hydride. Calcium-Amines. Diisobutylaluminum hydride. 8-Hydroxy-quinolinedihydroboronite. Lithium aluminum hydride. Lithium 9-boratabicy-clo[3.3.1]nonane. Lithium n-butyldiisopro-pylaluminum hydride. Lithium tri-j c-butylborohydride. Lithium triethylborohy-dride. Monochloroalane. Nickel boride. 2-Phenylbenzothiazoline. Potassium 9-(2,3-dimethyl-2-butoxy)-9-boratabicy-clo[3.3.1]nonane. Raney nickel. Sodium bis(2-methoxyethoxy)aluminum hydride. Sodium borohydride. Sodium borohy-dride-Nickel chloride. Sodium borohy-dride-Praeseodymium chloride. So-dium(dimethylamino)borohydride. Sodium hydrogen telluride. Thexyl chloroborane-Dimethyl sulfide. Tri-n-butylphosphine-Diphenyl disulfide. Tri-n-butyltin hydride. Zinc-l,2-Dibromoethane. Zinc borohydride. [Pg.583]

Other reagents which have occasionally been used to cleave hydrazides include diborane (which also reduces the carbonyl groups), sodium naphthalenide, 0,0-diethyldithiophosphoric acid, (EtO)2PS2H, - and sulfur monochloride. Nickel-aluminum alloy in aqueous methanolic potassium hydroxide is a good reagent for reductively cleaving a number of N—N bonded compounds, such as A -methyl-A -phenylhydrazine and Af/Z-dimethylnitrosamine. - Nitrosamines have also been cleaved with titanium(IV) chloride-sodium borohydride and lithium aluminium hydride. [Pg.389]

Modification of mannobiose (4-( -o -D-mannopyranosyl-D-mannose) yielded the di-iodo compounds (11) and (12), which may be reduced with nickel(ll) chloride-sodium borohydride to yield the glycosides (13) and (14) of 4-0-(j8-D-rhamnopyranosyl)-0 -D-rhamnopyranose or 4-<9-(j3-D-rhamnopyranosyl)-o -D-olivo-pyranose, respectively. ... [Pg.576]

The chain-growth catalyst is prepared by dissolving two moles of nickel chloride per mole of bidentate ligand (BDL) (diphenylphosphinobenzoic acid in 1,4-butanediol). The mixture is pressurized with ethylene to 8.8 MPa (87 atm) at 40°C. Boron hydride, probably in the form of sodium borohydride, is added at a molar ratio of two borohydrides per one atom of nickel. The nickel concentration is 0.001—0.005%. The 1,4-butanediol is used to solvent-extract the nickel catalyst after the reaction. [Pg.439]

The azidohydrins obtained by azide ion opening of epoxides, except for those possessing a tertiary hydroxy group, can be readily converted to azido mesylates on treatment with pyridine/methanesulfonyl chloride. Reduction and subsequent aziridine formation results upon reaction with hydrazine/ Raney nickel, lithium aluminum hydride, or sodium borohydride/cobalt(II)... [Pg.27]

These products can be reduced by sodium borohydride in combination with nickel(II) chloride to the corresponding 8-hydroxy--y-lactones in 90-95% yield.1... [Pg.331]

Chlordane (1 mM) in methyl alcohol (30 mL) underwent dechlorination in the presence nickel boride (generated by the reaction of nickel chloride and sodium borohydride). The catalytic dechlorination of chlordane by this method yielded a pentachloro derivative as the major product having the empirical formula C10H9CI5 (Dennis and Cooper, 1976). [Pg.265]

Using methanol ethanol, or 2-propanol in the presence of nickel chloride and sodium borohydride, dechlorination resulted in the formation of biphenyls with smaller quantities of mono- and dichlorobiphenyls (Dennis et al, 1979). [Pg.908]

Alkyl chlorides are with a few exceptions not reduced by mild catalytic hydrogenation over platinum [502], rhodium [40] and nickel [63], even in the presence of alkali. Metal hydrides and complex hydrides are used more successfully various lithium aluminum hydrides [506, 507], lithium copper hydrides [501], sodium borohydride [504, 505], and especially different tin hydrides (stannanes) [503,508,509,510] are the reagents of choice for selective replacement of halogen in the presence of other functional groups. In some cases the reduction is stereoselective. Both cis- and rrunj-9-chlorodecaIin, on reductions with triphenylstannane or dibutylstannane, gave predominantly trani-decalin [509]. [Pg.63]

Alkyl bromides and especially alkyl iodides are reduced faster than chlorides. Catalytic hydrogenation was accomplished in good yields using Raney nickel in the presence of potassium hydroxide [63] Procedure 5, p. 205). More frequently, bromides and iodides are reduced by hydrides [505] and complex hydrides in good to excellent yields [501, 504]. Most powerful are lithium triethylborohydride and lithium aluminum hydride [506]. Sodium borohydride reacts much more slowly. Since the complex hydrides are believed to react by an S 2 mechanism [505, 511], it is not surprising that secondary bromides and iodides react more slowly than the primary ones [506]. The reagent prepared from trimethoxylithium aluminum deuteride and cuprous iodide... [Pg.63]

Reduction of the double bond only was achieved by catalytic hydrogenation over palladium prepared by reduction with sodium borohydride. This catalyst does not catalyze hydrogenation of the aldehyde group [31]. Also sodium borohydride-reduced nickel was used for conversion of cinnamaldehyde to hydrocinnamaldehyde [31]. Homogeneous hydrogenation over tris(triphenylphosphine)rhodium chloride gave 60% of hydrocinnamaldehyde and 40% of ethylbenzene [5(5]. Raney nickel, by contrast, catalyzes total reduction to hydrocinnamyl alcohol [4S. Total reduction of both the double... [Pg.101]

Nickel prepared by reduction of nickel chloride with sodium borohydride was used for desulfurization of diethyl mercaptole of benzil. Partial desulfurization using 2 mol of nickel per mol of the mercaptole gave 71% yield of ethylthiodesoxybenzoin while treatment with a 10-fold molar excess of nickel over the mercaptole gave 61% yield of desoxybenzoin (benzyl phenyl ketone) 937. ... [Pg.131]

Nickel boride, formed in situ from sodium borohydride and nickel chloride, has been used to prepare dihydro derivatives from thiothymine 385 <2001JME1853> and thiobarbituric acid derivatives 388 <2002J(P1)2520>. With 4-thiothymine derivatives, an isomeric mixture of 3,4- and 3,6-dihydro derivatives 386 and 387 was obtained <2001JME1853>, but with 2-thiobarbiturates, clean reduction at the 2-position was able to be achieved <2002J(P1)2520>. [Pg.168]

Numerous methods for the synthesis of salicyl alcohol exist. These involve the reduction of salicylaldehyde or of salicylic acid and its derivatives. The alcohol can be prepared in almost theoretical yield by the reduction of salicylaldehyde with sodium amalgam, sodium borohydride, or lithium aluminum hydride by catalytic hydrogenation over platinum black or Raney nickel or by hydrogenation over platinum and ferrous chloride in alcohol. The electrolytic reduction of salicylaldehyde in sodium bicarbonate solution at a mercury cathode with carbon dioxide passed into the mixture also yields saligenin. It is formed by the electrolytic reduction at lead electrodes of salicylic acids in aqueous alcoholic solution or sodium salicylate in the presence of boric acid and sodium sulfate. Salicylamide in aqueous alcohol solution acidified with acetic acid is reduced to salicyl alcohol by sodium amalgam in 63% yield. Salicyl alcohol forms along with -hydroxybenzyl alcohol by the action of formaldehyde on phenol in the presence of sodium hydroxide or calcium oxide. High yields of salicyl alcohol from phenol and formaldehyde in the presence of a molar equivalent of ether additives have been reported (60). Phenyl metaborate prepared from phenol and boric acid yields salicyl alcohol after treatment with formaldehyde and hydrolysis (61). [Pg.293]

Reduction of l,2,4-triazin-3-ones (84) with Raney nickel, zinc and acetic acid, lithium aluminum hydride, sodium borohydride, titanium(III) chloride, p-toluenethiol, hydrogen and a palladium catalyst, or electrochemically, produces 4,5-dihydro-l,2,4-triazin-3-ones (268) (78HC(33)189, p. 246, 80JHC1237), which may be further reduced to 1,4,5,6-tetrahydro-l,2,4-triazin-3-ones (269). l,2,4-Triazin-3-ones (84) with hydriodic acid and phosphorus yielded imidazoles (05LA(339)243). 3-Alkoxy-l,2,4-triazines (126) and sodium borohydride gave the 2,5-dihydro derivatives (270) (80JOC4594). [Pg.413]

Organocopper reagents, 207 Palladium catalysts, 230 Potassium-Graphite, 252 Raney nickel, 265 Sodium acyloxyborohydrides, 277 Sodium borohydride, 278 Sodium borohydride-Nickel chloride, 279... [Pg.383]

Nickel(II) acetylacetonate, 221 Nickel boride, 197 Nickel carbonyl, 198 Nickel chloride-Lithium, 197 Raney nickel, 197, 265 Raney nickel-2-Propanol, 266 Sodium borohydride-Nickel boride, 280... [Pg.410]


See other pages where Sodium borohydride-Nickel chloride is mentioned: [Pg.393]    [Pg.393]    [Pg.470]    [Pg.97]    [Pg.663]    [Pg.239]    [Pg.503]    [Pg.293]    [Pg.240]    [Pg.99]    [Pg.170]    [Pg.135]    [Pg.537]    [Pg.96]    [Pg.382]    [Pg.243]    [Pg.341]    [Pg.355]    [Pg.191]    [Pg.240]    [Pg.124]    [Pg.72]    [Pg.371]    [Pg.372]    [Pg.381]    [Pg.407]    [Pg.410]   


SEARCH



Amines Sodium borohydride-Nickel chloride

Nickel chloride

© 2024 chempedia.info