Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nickel and Palladium Complexes

Examples of palladium boryl systems are slightly more common (four crystallographically characterized examples, Table 11) and their reactivity, for example with respect to alkyne insertion, has been investigated [210-213]. The complex ds-(dmpe)Pd(SnMe3)[B N(Me)CH2 2] (10.1 Fig. 33) was [Pg.100]


The systematic synthesis and spectral examination of a large series of complexes, M(ol)n, ra = 1-3, M = Ni or Pd, has been performed (140 -142), with special reference to the optical spectra of the products, again affirming the usefulness of the technique for observing spectral trends as a function of substituent (see later). A number of interesting points emerged from this study, some of which have already been alluded to. The optical data for the nickel and palladium complexes respectively are reported in Tables XVI and XVII. [Pg.149]

The first examples of highly active olefin polymerization catalysts based on late transition metals were nickel and palladium complexes containing bulky diimine ligands.310 312 For example, complex (120) was found to polymerize ethylene with an activity of ll,000gmmol h bar A range of PE materials with molecular weights up to 106 and... [Pg.16]

Nickel and palladium complexes also catalyze the formation of the carbon-phosphorus bonds in phosphorus(V) and phosphorus(III) compounds. Indeed, this chemistry has become a common way to prepare phosphine ligands by the catalytic formation of phosphine oxides and subsequent reduction, by the formation of phosphine boranes and subsequent decomplexation, or by the formation of phosphines directly. The catalytic formation of both aryl and vinyl carbon phosphorus bonds has been accomplished. [Pg.386]

Nickel and palladium complexes catalyze the conversion of alkyl iodides to alkylzinc iodides 30 with added diethylzinc (Scheme 28).74 Thus, for example, 1-iodooctane was converted at room temperature to n-octylzinc iodide after treatment with 2 equiv. of diethylzinc in the presence of 1.5 mol% of a palladium bis(phosphine) complex. [Pg.330]

The linear telomerization reaction of dienes was one of the very first processes catalyzed by water soluble phosphine complexes in aqueous media [7,8]. The reaction itself is the dimerization of a diene coupled with a simultaneous nucleophilic addition of HX (water, alcohols, amines, carboxylic acids, active methylene compounds, etc.) (Scheme 7.3). It is catalyzed by nickel- and palladium complexes of which palladium catalysts are substantially more active. In organic solutions [Pd(OAc)2] + PPhs gives the simplest catalyst combination and Ni/IPPTS and Pd/TPPTS were suggested for mnning the telomerizations in aqueous/organic biphasic systems [7]. An aqueous solvent would seem a straightforward choice for telomerization of dienes with water (the so-called hydrodimerization). In fact, the possibility of separation of the products and the catalyst without a need for distillation is a more important reason in this case, too. [Pg.194]

Scheme 6.27 considers other, formally confined, conformers of cycloocta-l,3,5,7-tetraene (COT) in complexes with metals. In the following text, M(l,5-COT) and M(l,3-COT) stand for the tube and chair structures, respectively. M(l,5-COT) is favored in neutral (18-electron) complexes with nickel, palladium, cobalt, or rhodium. One-electron reduction transforms these complexes into 19-electron forms, which we can identify as anion-radicals of metallocomplexes. Notably, the anion-radicals of the nickel and palladium complexes retain their M(l,5-COT) geometry in both the 18- and 19-electron forms. When the metal is cobalt or rhodium, transition in the 19-electron form causes quick conversion of M(l,5-COT) into M(l,3-COT) form (Shaw et al. 2004, reference therein). This difference should be connected with the manner of spin-charge distribution. The nickel and palladium complexes are essentially metal-based anion-radicals. In contrast, the SOMO is highly delocalized in the anion-radicals of cobalt and rhodium complexes, with at least half of the orbital residing in the COT ring. For this reason, cyclooctateraene flattens for a while and then acquires the conformation that is more favorable for the spatial structure of the whole complex, namely, M(l,3-COT) (see Schemes 6.1 and 6.27). [Pg.338]

In accord with calculations performed by Cavell et al. [110], the oxidative addition of C2-X functionalized azolium cations (X = halogen) to metal centers proceeds faster and with a more favorable reaction enthalpy than the oxidative addition of the C2-H substimted imidazolium cations [118, 119]. The former reaction was applied successfully for the preparation of nickel and palladium complexes bearing a variety of different ylidene ligands [119]. [Pg.108]

Organozinc reagents, including the Reformatsky reagents, are extensively used in transition metal catalysed coupling reactions with aryl halides or triflates, vinyl halides, and allylic halides or acetates, as reviewed by Erdik156. Nickel and palladium complexes are... [Pg.833]

Cassar, J. Synthesis of Aryl- and Vinyl-substituted Acetylene Derivatives by the Use of Nickel and Palladium Complexes, J. Organomet. Chem. 1975,93, 253. [Pg.147]

Because of its low acidity, hydrogen cyanide seldom adds to nonactivated multiple bonds. Catalytic processes, however, may be applied to achieve such additions. Metal catalysts, mainly nickel and palladium complexes, and [Co(CO)4]2 are used to catalyze the addition of HCN to alkenes known as hydrocyanation.l67 l74 Most studies usually apply nickel triarylphosphites with a Lewis acid promoter. The mechanism involves the insertion of the alkene into the Ni—H bond of a hydrido nickel cyanide complex to form a cr-alkylnickel complex173-176 (Scheme 6.3). The addition of DCN to deuterium-labeled compound 17 was shown to take place... [Pg.299]

Alkenes. Most Group VIII metals, metal salts, and complexes may be used as catalyst in hydrosilylation of alkenes. Platinum and its derivatives show the highest activity. Rhodium, nickel, and palladium complexes, although less active, may exhibit unique selectivities. The addition is exothermic and it is usually performed without a solvent. Transition-metal complexes with chiral ligands may be employed in asymmetric hydrosilylation 406,422... [Pg.323]

Addition of hydrogen cyanide to a terminal alkene is catalyzed principally by nickel and palladium complexes. The reaction may give either linear or branched products (equation 161). The reaction is of considerable industrial interest. A review on the earlier work is available.599... [Pg.296]

Zn2+ correlate can be obtained, as pyridinium salt, by reaction of corrole with zinc acetate in pyridine [25] in a procedure similar to that reported for the preparation of nickel and palladium complexes of corrole [11]. The zinc derivative is not paramagnetic and its formulation has been made on the basis of its proton NMR spectrum. Attempts to isolate the neutral zinc complex have been unsuccessful. [Pg.82]

Olefin isomerizations can follow two different mechanisms, depending on whether or not the metal species involved contains an M—H bond. Nickel and palladium complexes, but also iron and rhodium, can induce isomerization via a 77-allyl mechanism ... [Pg.1243]

Figure 17 Structures of nickel and palladium complexes with neutral or anionic ligands... Figure 17 Structures of nickel and palladium complexes with neutral or anionic ligands...
One of the more extraordinary recent developments in nickel and palladium polyalkene catalysis has been the development of a-diimines with bulky substituents as ligands in nickel and palladium complexes. When bulky aryl groups are used (R = isopropyl), these catalysts polymerize ethylene with high activities to high molecular weight highly branched... [Pg.3213]

The X-ray study 170, 171) established a planar structure for the cyclobutadiene ring with C-—C distance equal to 1.46 A and angles of 90°. All the M—C distances are equivalent and close to those observed in ferrocene. The phenyl and methyl substituents are distorted from the ring plane and bent towards the metal atom. If one assumes that cyclobutadiene occupies two coordination sites then in the known tetraphenylcyclobutadiene-nickel and -palladium complexes the metal atom has a coordination number of 5. This suggests coordinative unsaturation for the metal and a priori one may expect an associative substitution for such complexes. [Pg.379]

Triggered by the developments in late transition metal catalyzed polymerization, new catalyst systems were described very recently for the oligomerization of ethene. Nickel and palladium complexes based on a-diimine ligands 13 and imi-nophosphines 14 were reported to be very active and selective oligomerization catalysts [57, 58], Activation of the Ni(II) diimine halides with a large excess of MAO (210 equiv.) leads to oligomerization catalysts with activities of between... [Pg.250]

Cassar, L. Synthesis of aryl- and vinyl-substituted acetylene derivatives by the use of nickel and palladium complexes. J. Organomet. [Pg.619]


See other pages where Nickel and Palladium Complexes is mentioned: [Pg.70]    [Pg.297]    [Pg.298]    [Pg.518]    [Pg.799]    [Pg.305]    [Pg.196]    [Pg.108]    [Pg.88]    [Pg.89]    [Pg.89]    [Pg.5]    [Pg.6]    [Pg.184]    [Pg.231]    [Pg.2]    [Pg.69]    [Pg.203]    [Pg.866]    [Pg.895]    [Pg.113]    [Pg.1724]    [Pg.332]    [Pg.1182]   


SEARCH



Applications of Palladium and Nickel Complexes in Natural Product Synthesis

Nickel and Palladium Chlorohydridobis(phosphine) Complexes

Nickel palladium

Nickel, Palladium, and Platinum Complexes Derived from OFCOT

Nickel, Platinum, and Palladium Complexes

Organometallic Reactions Involving Hydro-Nickel, -Palladium, and -Platinum Complexes

Quadruply Bridged Dinuclear Complexes of Platinum, Palladium, and Nickel

The Role of Redox Processes in Reactions Catalyzed by Nickel and Palladium Complexes with Anionic Pincer Ligands

© 2024 chempedia.info