Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nickel activation energy

When nickel hydroxide is oxidized at the nickel electrode in alkaline storage batteries the black trivalent gelatinous nickel hydroxide oxide [12026-04-9], Ni(0H)0, is formed. In nickel battery technology, nickel hydroxide oxide is known as the nickel active mass (see Batteries, secondary cells). Nickel hydroxide nitrate [56171-41-6], Ni(0H)N02, and nickel chloride hydroxide [25965-88-2], NiCl(OH), are frequently mentioned as intermediates for the production of nickel powder in aqueous solution. The binding energies for these compounds have been studied (55). [Pg.10]

The neutron dose to graphite due to irradiation is commonly reported as a time integrated flux of neutrons per unit area (or fluence) referenced to a particular neutron energy. Neutron energies greater that 50 keV, 0.1 MeV, 0.18 MeV, and 1 MeV were adopted in the past and can be readily foimd in the literature. In the U.K., irradiation data are frequently reported in fluences referenced to a standard flux spectrum at a particular point in the DIDO reactor, for which the displacement rate was measured by the nickel activation [ Ni(np) t o] reaction [equivalent DIDO nickel (EDN)]. Early on, neutron irradiation doses to the graphite moderator were reported in terms of the bum-up (energy extracted) from imit mass of the adjacent nuclear fuel, i.e., MW days per adjacent tonne of fuel, or MWd/Ate. [Pg.459]

There are few studies in the literature on the kinetics and mechanism of oxidation over base metal oxides. Blumenthal and Nobe studied the oxidation of CO over copper oxide on alumina between 122 and 164°C. They reported that the kinetics is first order with respect to CO concentration, and the activation energy is 20 kcal/mole (77). Gravelle and Teichner studied CO oxidation on nickel oxide, and found that the kinetics is also first order with respect to CO concentration (78). They suggested that the mechanism of reaction is by the Eley-Rideal mechanism... [Pg.86]

The attention of the authors was particularly directed toward the increased activity of the nickel catalyst film when copper was added. This increase is revealed in a change of the initial reaction rate of copper itself and of all the alloys (except those containing 25-35% nickel) they are more active than nickel itself. A respectively similar difference was observed for the activation energy and the preexponential factor. [Pg.271]

Activation Energy of Hi-Di Equilibration Reaction on Nickel and Nickel-Copper Film Catalysts (a) Within Temperature Range —100°— - 20°C and (b) After Preheating in Hydrogen at Jfl-50°C (55)... [Pg.272]

The recombination reaction proceeding on nickel-copper alloy films rich in copper and on copper itself maintained a constant value of the activation energy of about 1 kcal/mole. The Arrhenius plot for an alloy film Ni20Cu80 is represented in Fig. 14. [Pg.280]

Kinetics studies of the hydrotreatment (and hydrocracking) of VR has led to the conclusion that most of the metals, sulfur and nitrogen removal takes place during the first 50% of the whole VR conversion [119-123], More than one reactor was needed for HDM and HDS of a Maya VR, when HDT is used as feed pretreatment [119,120], Although vanadium removal appears easier and faster than nickel removal, their kinetics results showed very similar values of the activation energy for the demetallization reactions [122],... [Pg.50]

It is particularly helpful that we can take the Cu-Ni system as an example of the use of successive deposition for preparing alloy films where a miscibility gap exists, and one component can diffuse readily, because this alloy system is also historically important in discussing catalysis by metals. The rate of migration of the copper atoms is much higher than that of the nickel atoms (there is a pronounced Kirkendall effect) and, with polycrystalline specimens, surface diffusion of copper over the nickel crystallites requires a lower activation energy than diffusion into the bulk of the crystallites. Hence, the following model was proposed for the location of the phases in Cu-Ni films (S3), prepared by annealing successively deposited layers at 200°C in vacuum, which was consistent with the experimental data on the work function. [Pg.122]

Choudhary et al. [58] found reaction controlled kinetics with an activation energy of 56.6 kJ/mol for the leaching of skeletal nickel, similar to the leaching of skeletal copper. The kinetics did not fit Levenspiel s shrinking core model [57] but it should be noted that the leaching solution was agitated with a flat stirrer at 1500 rpm. [Pg.145]

The single crystal results are compared in Fig. 2 with three sets of data taken from Ref. 13 for nickel supported on alumina, a high surface area catalyst. This comparison shows extraordinary similarities in kinetic data taken under nearly identical conditions. Thus, for the Hj-CO reaction over nickel, there is no significant variation in the specific reaction rates or the activation energy as the catalyst changes from small metal particles to bulk single crystals. These data provide convincing evidence that the methanation reaction rate is indeed structure insensitive on nickel catalysts. [Pg.158]


See other pages where Nickel activation energy is mentioned: [Pg.269]    [Pg.575]    [Pg.269]    [Pg.575]    [Pg.601]    [Pg.947]    [Pg.129]    [Pg.476]    [Pg.322]    [Pg.1039]    [Pg.1059]    [Pg.1308]    [Pg.272]    [Pg.273]    [Pg.280]    [Pg.225]    [Pg.226]    [Pg.285]    [Pg.190]    [Pg.54]    [Pg.331]    [Pg.259]    [Pg.74]    [Pg.74]    [Pg.115]    [Pg.149]    [Pg.153]    [Pg.156]    [Pg.16]    [Pg.202]    [Pg.480]    [Pg.181]    [Pg.551]    [Pg.341]    [Pg.143]    [Pg.208]    [Pg.339]    [Pg.201]    [Pg.204]    [Pg.157]    [Pg.169]    [Pg.191]    [Pg.34]   
See also in sourсe #XX -- [ Pg.7 , Pg.8 ]




SEARCH



Nickel activity

© 2024 chempedia.info