Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Newtonian strain

The viscous stress tensor of both phases can be modeled using the rigorous Newtonian strain-stress relation ... [Pg.916]

In the CPV model the viscous stress tensor for the particulate phase is modeled using a simplified version of the Newtonian strain-stress relation (10.88), similar to that employed for the gas phase ... [Pg.921]

Non-Newtonian flow processes play a key role in many types of polymer engineering operations. Hence, formulation of mathematical models for these processes can be based on the equations of non-Newtonian fluid mechanics. The general equations of non-Newtonian fluid mechanics provide expressions in terms of velocity, pressure, stress, rate of strain and temperature in a flow domain. These equations are derived on the basis of physical laws and... [Pg.1]

In generalized Newtonian fluids, before derivation of the final set of the working equations, the extra stress in the expanded equations should be replaced using the components of the rate of strain tensor (note that the viscosity should also be normalized as fj = rj/p). In contrast, in the modelling of viscoelastic fluids, stress components are found at a separate step through the solution of a constitutive equation. This allows the development of a robust Taylor Galerkin/ U-V-P scheme on the basis of the described procedure in which the stress components are all found at time level n. The final working equation of this scheme can be expressed as... [Pg.136]

Note that convected derivatives of the stress (and rate of strain) tensors appearing in the rheological relationships derived for non-Newtonian fluids will have different forms depending on whether covariant or contravariant components of these tensors are used. For example, the convected time derivatives of covariant and contravariant stress tensors are expressed as... [Pg.263]

For some materials the linear constitutive relation of Newtonian fluids is not accurate. Either stress depends on strain in a more complex way, or variables other than the instantaneous rate of strain must be taken into account. Such fluids are known collectively as non-Newtonian. Many different types of behavior have been observed, ranging from fluids for which the viscosity in the Navier-Stokes equation is a simple function of the shear rate to the so-called viscoelastic fluids, for which the constitutive equation is so different that the normal stresses can cause the fluid to flow in a manner opposite to that predicted for a Newtonian fluid. [Pg.89]

The apparent viscosity, defined as du/dj) drops with increased rate of strain. Dilatant fluids foUow a constitutive relation similar to that for pseudoplastics except that the viscosities increase with increased rate of strain, ie, n > 1 in equation 22. Dilatancy is observed in highly concentrated suspensions of very small particles such as titanium oxide in a sucrose solution. Bingham fluids display a linear stress—strain curve similar to Newtonian fluids, but have a nonzero intercept termed the yield stress (eq. 23) ... [Pg.96]

One simple rheological model that is often used to describe the behavior of foams is that of a Bingham plastic. This appHes for flows over length scales sufficiently large that the foam can be reasonably considered as a continuous medium. The Bingham plastic model combines the properties of a yield stress like that of a soHd with the viscous flow of a Hquid. In simple Newtonian fluids, the shear stress T is proportional to the strain rate y, with the constant of proportionaHty being the fluid viscosity. In Bingham plastics, by contrast, the relation between stress and strain rate is r = where is... [Pg.430]

Of the models Hsted in Table 1, the Newtonian is the simplest. It fits water, solvents, and many polymer solutions over a wide strain rate range. The plastic or Bingham body model predicts constant plastic viscosity above a yield stress. This model works for a number of dispersions, including some pigment pastes. Yield stress, Tq, and plastic (Bingham) viscosity, = (t — Tq )/7, may be determined from the intercept and the slope beyond the intercept, respectively, of a shear stress vs shear rate plot. [Pg.167]

Elasticity is another manifestation of non-Newtonian behavior. Elastic Hquids resist stress and deform reversibly provided that the strain is not too large. The elastic modulus is the ratio of the stress to the strain. Elasticity can be characterized usiag transient measurements such as recoil when a spinning bob stops rotating, or by steady-state measurements such as normal stress ia rotating plates. [Pg.304]

A wide variety of nonnewtonian fluids are encountered industrially. They may exhibit Bingham-plastic, pseudoplastic, or dilatant behavior and may or may not be thixotropic. For design of equipment to handle or process nonnewtonian fluids, the properties must usually be measured experimentally, since no generahzed relationships exist to pi e-dicl the properties or behavior of the fluids. Details of handling nonnewtonian fluids are described completely by Skelland (Non-Newtonian Flow and Heat Transfer, Wiley, New York, 1967). The generalized shear-stress rate-of-strain relationship for nonnewtonian fluids is given as... [Pg.565]

A flowing fluid is acted upon by many forces that result in changes in pressure, temperature, stress, and strain. A fluid is said to be isotropic when the relations between the components of stress and those of the rate of strain are the same in all directions. The fluid is said to be Newtonian when this relationship is linear. These pressures and temperatures must be fully understood so that the entire flow picture can be described. [Pg.883]

In a perfectly viscous (Newtonian) fluid the shear stress, t is directly proportional to the rate of strain (dy/dt or y) and the relationship may be written as... [Pg.42]

In a fluid under stress, the ratio of the shear stress, r. to the rate of strain, y, is called the shear viscosity, rj, and is analogous to the modulus of a solid. In an ideal (Newtonian) fluid the viscosity is a material constant. However, for plastics the viscosity varies depending on the stress, strain rate, temperature etc. A typical relationship between shear stress and shear rate for a plastic is shown in Fig. 5.1. [Pg.344]

Equations (5.21), (5.22) and (5.23) are useful for the high strain rates experienced in injection moulding or extrusion but unfortunately they do not predict the low strain rate situation very well where plastic melts tend towards Newtonian behaviour (ie n -) 1). This is illustrated in Fig. 5.7. [Pg.352]

The viscosity of a fluid arises from the internal friction of the fluid, and it manifests itself externally as the resistance of the fluid to flow. With respect to viscosity there are two broad classes of fluids Newtonian and non-Newtonian. Newtonian fluids have a constant viscosity regardless of strain rate. Low-molecular-weight pure liquids are examples of Newtonian fluids. Non-Newtonian fluids do not have a constant viscosity and will either thicken or thin when strain is applied. Polymers, colloidal suspensions, and emulsions are examples of non-Newtonian fluids [1]. To date, researchers have treated ionic liquids as Newtonian fluids, and no data indicating that there are non-Newtonian ionic liquids have so far been published. However, no research effort has yet been specifically directed towards investigation of potential non-Newtonian behavior in these systems. [Pg.56]

When the magnitude of deformation is not too great, viscoelastic behavior of plastics is often observed to be linear, i.e., the elastic part of the response is Hookean and the viscous part is Newtonian. Hookean response relates to the modulus of elasticity where the ratio of normal stress to corresponding strain occurs below the proportional limit of the material where it follows Hooke s law. Newtonian response is where the stress-strain curve is a straight line. [Pg.42]

The Maxwell model is also called Maxwell fluid model. Briefly it is a mechanical model for simple linear viscoelastic behavior that consists of a spring of Young s modulus (E) in series with a dashpot of coefficient of viscosity (ji). It is an isostress model (with stress 5), the strain (f) being the sum of the individual strains in the spring and dashpot. This leads to a differential representation of linear viscoelasticity as d /dt = (l/E)d5/dt + (5/Jl)-This model is useful for the representation of stress relaxation and creep with Newtonian flow analysis. [Pg.66]

Viscosity is usually understood to mean Newtonian viscosity in which case the ratio of shearing stress to the shearing strain is constant. In non-Newtonian behavior, which is the usual case for plastics, the ratio varies with the shearing stress (Fig. 8-5). Such ratios are often called the apparent viscosities at the corresponding shearing stresses. Viscosity is measured in terms of flow in Pa s, with water as the base standard (value of 1.0). The higher the number, the less flow. [Pg.449]

Fig. 37. Strain rate distribution along the centerline in a 2-dimensional hyperbolic flow (the flow geometry is shown as an insert). The solid curve, redrawn according to ref. 131, corresponds to a viscoelastic fluid (the spike at x = 2 is a calculation artefact) the dotted curve is calculated with POLYFLOW for a Newtonian liquid... Fig. 37. Strain rate distribution along the centerline in a 2-dimensional hyperbolic flow (the flow geometry is shown as an insert). The solid curve, redrawn according to ref. 131, corresponds to a viscoelastic fluid (the spike at x = 2 is a calculation artefact) the dotted curve is calculated with POLYFLOW for a Newtonian liquid...
A further important property which may be shown by a non-Newtonian fluid is elasticity-which causes the fluid to try to regain its former condition as soon as the stress is removed. Again, the material is showing some of the characteristics of both a solid and a liquid. An ideal (Newtonian) liquid is one in which the stress is proportional to the rate of shear (or rate of strain). On the other hand, for an ideal solid (obeying Hooke s Law) the stress is proportional to the strain. A fluid showing elastic behaviour is termed viscoelastic or elastoviseous. [Pg.104]

The general mode of operation in dynamic tests is to vary the stress sinusoidally with time. A viscoelastic solid in which the viscous element is that of a Newtonian liquid (as defined earlier) responds with a sinusoidal strain of identical oscillation frequency. However, because of the time-dependent relaxation processes taking place within the material, the strain lags behind the stress, as illustrated in Figure 7.9. [Pg.107]


See other pages where Newtonian strain is mentioned: [Pg.3136]    [Pg.403]    [Pg.424]    [Pg.438]    [Pg.438]    [Pg.460]    [Pg.474]    [Pg.3136]    [Pg.403]    [Pg.424]    [Pg.438]    [Pg.438]    [Pg.460]    [Pg.474]    [Pg.421]    [Pg.79]    [Pg.136]    [Pg.250]    [Pg.88]    [Pg.96]    [Pg.177]    [Pg.50]    [Pg.1883]    [Pg.65]    [Pg.384]    [Pg.360]    [Pg.503]    [Pg.127]    [Pg.128]   
See also in sourсe #XX -- [ Pg.3136 ]




SEARCH



Newtonian fluid, stress-strain rate relation

© 2024 chempedia.info