Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sympathetic nervous system neurotransmitters

Sympathetic nervous system. That portion of the autonomic nervous system that utilizes norepinephrine as a neurotransmitter at its neuroeffector junctions. [Pg.455]

The phenyl ethanol amine derivatives epinephrine (U and norepinephrine ( ) are intimately associated with the sympathetic nervous system. These two neurotransmitter hor-... [Pg.19]

Acetylcholine (Ach) is an ester of acetic acid and choline with the chemical formula CH3COOCH2CH2N+ (CH3)3. ACh functions as a chemical transmitter in both the peripheral nervous system (PNS) and central nervous system (CNS) in a wide range of organisms, humans included. Neurotransmitter involved in behavioral state control, postural tone, cognition and memory, and autonomous parasympathetic (and preganglionic sympathetic) nervous system. [Pg.11]

N euro transmitters are chemical substances called neurohormones. These are released at Hie nerve ending that facilitate the transmission of nerve impulses. The two neurohormones (neurotransmitters) of the sympathetic nervous system are epinephrine and norepinephrine Epinephrine is secreted by the adrenal medulla Norepinephrine is secreted mainly at nerve ending of sympathetic (also called adrenergic) nerve fibers (Pig. 22-2). [Pg.200]

Adrenal medulla. Derived from neural crest tissue, the adrenal medulla forms the inner portion of the adrenal gland. It is the site of production of the catecholamines, epinephrine and norepinephrine, which serve as a circulating counterpart to the sympathetic neurotransmitter, norepinephrine, released directly from sympathetic neurons to the tissues. As such, the adrenal medulla and its hormonal products play an important role in the activity of the sympathetic nervous system. This is fully discussed in Chapter 9, which deals with the autonomic nervous system. [Pg.132]

The autonomic nervous system is itself divided into two parts the sympathetic and parasympathetic nervous systems. The sympathetic nervous system serves several glands and involuntary muscles. The primary neurotransmitter of the sympathetic nervous system is norepinephrine, which acts through a and p adrenergic receptors. [Pg.296]

The neurotransmitters of the sympathetic nervous system are the catecholamines noradrenaline (mainly in the nerve terminals of peripheral nerves and in the central nervous system), adrenaline (mainly in the adrenal medulla) which has to reach the target organs with the blood stream and dopamine. [Pg.300]

Noradrenaline and adrenaline are the classic catecholamines and neurotransmitters in the sympathetic nervous system. Noradrenaline stimulates the following subtypes of adrenoceptors P, a, U2. It has positive inotropic and chronotropic activities as a result of /3i-receptor stimulation. In addition, it is a potent vasoconstrictor agent as a result of the stimulation of both subtypes (ai,a2) of a-adrenoceptors. After intravenous infusion, its effects develop within a few minutes, and these actions disappear within 1-2 minutes after stopping the infusion. It may be used in conditions of acute hypotension and shock, especially in patients with very low vascular resistance. It is also frequently used as a vasoconstrictor, added to local anaesthetics. Adrenaline stimulates the following subtypes of adrenoceptors /3i, P2, oil, 0L2. Its pharmacological profile greatly resembles that of noradrenaline (see above), as well as its potential applications in shock and hypotension. Like noradrenaline, its onset and duration of action are very short, as a result of rapid inactivation in vivo. Both noradrenaline and adrenaline may be used for cardiac stimulation. Their vasoconstrictor activity should be kept in mind. A problem associated with the use of /3-adrenoceptor stimulants is the tachyphylaxis of their effects, explained by the /3-adrenoceptor downregulation, which is characteristic for heart failure. [Pg.338]

Two PNS neurotransmitters, acetylchohne and norepinephrine, have particular chnical importance. Both are synthesized and stored primarily in the nerve terminals until released by a nerve impulse. It should be noted, to avoid confusion, that in the United States the transmitter in the sympathetic nervous system is referred to as norepinephrine and the major adrenal medullary hormone is referred to as epinephrine. In Europe and most of the world these two substances are called noradrenaline and adrenaline, respectively. [Pg.85]

The chemical transmitters may be small molecules— notably acetylcholine, norepinephrine, epinephrine, serotonin, dopamine, or histamine. Acetylcholine and norpeinephrine are the dominant neurotransmitters in the parasympathetic and sympathetic nervous systems, respectively. Dopamine and serotonin are employed primarily in the central nervous system. Neurotransmitters may also be more complex peptides (small proteins) such as substance P, vasopressin, endorphins, and enkephalins. The latter agents are of particular importance to our considerations of opium since they represent the endogenous opiates—agents that exist within the body whose actions are mimicked by exogenous, or outside, agents such as morphine, heroin, codeine, and so on. These neurotransmitters serve to convey information between neurons across the synaptic cleft (the junction where two neurons meet) or at the neuroeffector junction (the site between neuron and an innervated organ such as muscle or secretory gland). [Pg.37]

Each neuron has specific synthetic machinery that enables it to both synthesize and eliminate a specific neurotransmitter. For example, neurons of the sympathetic nervous system employ norepinephrine and epinephrine as their transmitters. Other neurons, particularly in the central nervous system, employ dopamine as their transmitter. Dopamine is a particularly important transmitter for a variety of neuronal functions. Its loss is associated with Parkinson disease, and it is a critical agent in the mediation of pleasure and reward processes. Dopamine, due to its association with pleasurable sensations, is widely implicated in the actions of a number of drugs of abuse, including cocaine, opiates, and methamphetamines. [Pg.39]

Norephinephrine is found exclusively in the sympathetic nervous system in the postganglionic connections. It also is a key neurotransmitter in many areas of the CNS. Such... [Pg.104]

Cocaine inhibits the presynaptic reuptake of the neurotransmitters norepinehrine, serotonin, and dopamine at synaptic junctions. This results in increased concentrations in the synaptic cleft. Since norepinephrine acts within the sympathetic nervous system, increased sympathetic stimulation is produced. Physiological effects of this stimulation include tachycardia, vasoconstriction, mydriasis, and hyperthermia.3 CNS stimulation results in increased alertness, diminished appetite, and increased energy. The euphoria or psychological stimulation produced by cocaine is thought to be related to the inhibition of serotonin and dopamine reuptake. Cocaine also acts as a local anesthetic due to its ability to block sodium channels in neuronal cells.3... [Pg.39]

Norepinephrine A neurotransmitter that is important in certain brain pathways and in the terminal synapses of the sympathetic nervous system (SYN noradrenaline). [Pg.629]

Q4 The ganglionic transmitter of both divisions of the autonomic nervous system is acetylcholine. The major postganglionic neurotransmitter of the sympathetic nervous system is norepinephrine (noradrenaline), but a small number of structures are innervated by sympathetic, cholinergic fibres. These fibres release acetylcholine and the structures innervated include the sweat glands and blood vessels supplying skeletal muscle. In the parasympathetic system the postganglionic neurotransmitter is acetylcholine. [Pg.293]

Norepinephrine Mostly excitatory, but inhibitory in some areas. Secreted by neurons in the locus ceruleus (subcortical area) to widespread areas of the brain, controlling wakefulness, overall activity, and mood. Also diffusely secreted in the sympathetic nervous system. Diffuse and widespread symptoms, including depression, changes in blood pressure, heart rate, and diffuse physiological responses, among many others. An important transmitter in the sympathetic branch of the autonomic nervous system. Diffusely affected by many medications. Several antidepressants work specifically on this neurotransmitter and its receptor sites. Many medications for general medical conditions affect this neurotransmitter as well. [Pg.18]

Drugs (hat reduce blood pre.ssure by depressing (he activity of the sympathetic nervous system have been u.sed as effective agents in the treatment of hypertension. This can be accompli.shcd in several ways (a) depleting the stores of neurotransmitter, (h) reducing the number of impulses (rov-... [Pg.649]


See other pages where Sympathetic nervous system neurotransmitters is mentioned: [Pg.50]    [Pg.50]    [Pg.77]    [Pg.196]    [Pg.385]    [Pg.221]    [Pg.295]    [Pg.330]    [Pg.231]    [Pg.353]    [Pg.238]    [Pg.218]    [Pg.133]    [Pg.175]    [Pg.273]    [Pg.132]    [Pg.332]    [Pg.383]    [Pg.1534]    [Pg.66]    [Pg.193]    [Pg.77]    [Pg.20]    [Pg.287]    [Pg.5797]    [Pg.175]    [Pg.147]    [Pg.480]    [Pg.147]    [Pg.479]    [Pg.480]    [Pg.121]   
See also in sourсe #XX -- [ Pg.393 ]




SEARCH



Nervous system neurotransmitters

Neurotransmitter systems

Sympathetic

Sympathetic nervous

Sympathetic nervous system

Sympathetic system

© 2024 chempedia.info