Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Neuron axon, action potential

As discussed previously, the neurohypophysis has a direct anatomical connection to the hypothalamus. Therefore, the hypothalamus regulates the release of hormones from the neurohypophysis by way of neuronal signals. Action potentials generated by the neurosecretory cells originating in the hypothalamus are transmitted down the neuronal axons to the nerve terminals in the neurohypophysis and stimulate the release of the hormones into the blood. The tracts formed by these axons are referred to as hypothalamic-hypophyseal tracts (see Figure 10.2). The action potentials are initiated by various forms of sensory input to the hypothalamus. Specific forms of sensory input that regulate the release of ADH and oxytocin are described in subsequent sections in this chapter. [Pg.121]

In this section, we first Introduce some of the key properties of neurons and action potentials, which move down the axon very rapidly. We then describe how the voltagegated channels responsible for propagating action potentials In neurons operate. In the following section, we examine how arrival of an action potential at the axon terminus causes secretion of chemicals called neurotransmitters. These chemicals, in turn, bind to receptors on adjacent cells and cause changes in the membrane potential of these cells. Thus electric signals carry Information within a nerve cell, while chemical signals transmit Information from one neuron to another or from a neuron to a muscle or other target cell. [Pg.276]

Norepinephrine is synthesized from tyrosine, stored in presynaptic vesicles, and released from vesicles upon the arrival of axonal action potentials. After its release into synapses, unbound norepinephrine is taken back into presynaptic neurons by norepinephrine transporters, which terminate its effect. The reuptake process clears 70-90%... [Pg.3]

Target tissues are often the other neurons. The action potential arrives along an axon, which spfits up in several synapses. These act as presynaptic terminals on other neurons. Oflier target tissue types are muscles, where a part of the muscle called a muscle group is innervated. Other targets are internal organs, blood vessels, intestines, and glands (eyes, sweat, saliva, tears, endocrine). [Pg.135]

Neuromuscular junction (NMJ) is the synapse or junction of the axon terminal of motoneurons with the highly excitable region of the muscle fibre s plasma membrane. Neuronal signals pass through the NMJ via the neurotransmitter ACh. Consequent initiation of action potentials across the muscle s cell surface ultimately causes the muscle contraction. [Pg.828]

The primary role of the sodium channels is to generate action potentials in excitable cells. In case of neurons, the sodium channel density is high at axon hillocks or axon initial segment where action potentials start to propagate. The sodium channels are also present in dendrites. The sodium channels contribute to amplifying synaptic inputs (particularly those distally located) and are actively involved in back propagation of action potentials into dendrites. Subtle differences in properties of sodium channels influence the dendritic processes of synaptic integration in and complex ways. [Pg.1305]

Figure 1.6 Presynaptic inhibition of the form seen in the dorsal horn of the spinal cord, (a) The axon terminal (i) of a local neuron is shown making an axo-axonal contact with a primary afferent excitatory input (ii). (b) A schematic enlargement of the synapse, (c) Depolarisation of the afferent terminal (ii) at its normal resting potential by an arriving action potential leads to the optimal release of neurotransmitter, (d) When the afferent terminal (ii) is already partially depolarised by the neurotransmitter released onto it by (i) the arriving acting potential releases less transmitter and so the input is less effective... Figure 1.6 Presynaptic inhibition of the form seen in the dorsal horn of the spinal cord, (a) The axon terminal (i) of a local neuron is shown making an axo-axonal contact with a primary afferent excitatory input (ii). (b) A schematic enlargement of the synapse, (c) Depolarisation of the afferent terminal (ii) at its normal resting potential by an arriving action potential leads to the optimal release of neurotransmitter, (d) When the afferent terminal (ii) is already partially depolarised by the neurotransmitter released onto it by (i) the arriving acting potential releases less transmitter and so the input is less effective...
To achieve their different effects NTs are not only released from different neurons to act on different receptors but their biochemistry is different. While the mechanism of their release may be similar (Chapter 4) their turnover varies. Most NTs are synthesised from precursors in the axon terminals, stored in vesicles and released by arriving action potentials. Some are subsequently broken down extracellularly, e.g. acetylcholine by cholinesterase, but many, like the amino acids, are taken back into the nerve where they are incorporated into biochemical pathways that may modify their structure initially but ultimately ensure a maintained NT level. Such processes are ideally suited to the fast transmission effected by the amino acids and acetylcholine in some cases (nicotinic), and complements the anatomical features of their neurons and the recepter mechanisms they activate. Further, to ensure the maintenance of function in vital pathways, glutamate and GABA are stored in very high concentrations (10 pmol/mg) just as ACh is at the neuromuscular junction. [Pg.25]

Figure 2.12 From voltage-clamp to current-clamp micro-electrode recordings of synaptic current (/, lower trace) and synaptic potential with superimposed action potential (V, upper trace) from a neuron in an isolated rat superior cervical sympathetic ganglion following a single stimulus (S) applied to the preganglionic nerve trunk. The interval between the stimulus and the postsynaptic response includes the conduction time along the unmyelinated axons of the preganglionic nerve trunk. (SJ Marsh and DA Brown, unpublished)... Figure 2.12 From voltage-clamp to current-clamp micro-electrode recordings of synaptic current (/, lower trace) and synaptic potential with superimposed action potential (V, upper trace) from a neuron in an isolated rat superior cervical sympathetic ganglion following a single stimulus (S) applied to the preganglionic nerve trunk. The interval between the stimulus and the postsynaptic response includes the conduction time along the unmyelinated axons of the preganglionic nerve trunk. (SJ Marsh and DA Brown, unpublished)...
Figure 5.1 Mechanism of action at a chemical synapse. The arrival of an action potential at the axon terminal causes voltage-gated Ca++ channels to open. The resulting increase in concentration of Ca++ ions in the intracellular fluid facilitates exocytosis of the neurotransmitter into the synaptic cleft. Binding of the neurotransmitter to its specific receptor on the postsynaptic neuron alters the permeability of the membrane to one or more ions, thus causing a change in the membrane potential and generation of a graded potential in this neuron. Figure 5.1 Mechanism of action at a chemical synapse. The arrival of an action potential at the axon terminal causes voltage-gated Ca++ channels to open. The resulting increase in concentration of Ca++ ions in the intracellular fluid facilitates exocytosis of the neurotransmitter into the synaptic cleft. Binding of the neurotransmitter to its specific receptor on the postsynaptic neuron alters the permeability of the membrane to one or more ions, thus causing a change in the membrane potential and generation of a graded potential in this neuron.
Stimulation of a nociceptor in the periphery of the body elicits action potentials in the first-order neuron, which transmits the signal to the second-order neuron in the dorsal horn of the spinal cord. From the spinal cord, the signal is transmitted to several regions of the brain. The most prominent ascending nociceptive pathway is the spinothalamic tract. Axons of the second-order sensory neurons project to the contralateral (opposite) side of the spinal cord and ascend in the white matter, terminating in the thalamus (see Figure 8.1). The thalamus contributes to the basic sensation or awareness of pain only it cannot determine the source of the painful stimulus. [Pg.81]

As its name implies, the neurohypophysis is derived embryonically from nervous tissue. It is essentially an outgrowth of the hypothalamus and is composed of bundles of axons, or neural tracts, of neurosecretory cells originating in two hypothalamic nuclei. These neurons are referred to as neurosecretory cells because they generate action potentials as well as synthesize hormones. The cell bodies of the neurosecretory cells in the supraoptic nuclei produce primarily antidiuretic hormone (ADH) and the cell bodies of the paraventricular nuclei produce primarily oxytocin. These hormones are then transported down the axons to the neurohypophysis and stored in membrane-bound vesicles in the neuron terminals. Much like neurotransmitters, the hormones are released in response to the arrival of action potentials at the neuron terminal. [Pg.120]

Action potential, or nerve impulse The wave of electrical activity that passes from the dendrites of the neuronal cell body, down the axon to the synaptic bouton. [Pg.235]

Neurons constitute the most striking example of membrane polarization. A single neuron typically maintains thousands of discrete, functional microdomains, each with a distinctive protein complement, location and lifetime. Synaptic terminals are highly specialized for the vesicle cycling that underlies neurotransmitter release and neurotrophin uptake. The intracellular trafficking of a specialized type of transport vesicles in the presynaptic terminal, known as synaptic vesicles, underlies the ability of neurons to receive, process and transmit information. The axonal plasma membrane is specialized for transmission of the action potential, whereas the plasma... [Pg.140]

Keywords action potential axon ion channel mechanoreceptor membrane potential neurons neurotransmitter olfaction proteins synaptic gap. [Pg.55]

The axon is a long narrow process that extends from the cell body and conveys action potentials toward the neuron s synapses. Action poten-... [Pg.40]


See other pages where Neuron axon, action potential is mentioned: [Pg.29]    [Pg.31]    [Pg.285]    [Pg.388]    [Pg.889]    [Pg.406]    [Pg.438]    [Pg.420]    [Pg.515]    [Pg.511]    [Pg.13]    [Pg.244]    [Pg.1171]    [Pg.7]    [Pg.37]    [Pg.128]    [Pg.25]    [Pg.29]    [Pg.36]    [Pg.36]    [Pg.158]    [Pg.17]    [Pg.183]    [Pg.59]    [Pg.160]    [Pg.402]    [Pg.459]    [Pg.619]    [Pg.624]    [Pg.634]    [Pg.822]    [Pg.38]    [Pg.59]    [Pg.151]    [Pg.152]   
See also in sourсe #XX -- [ Pg.1765 ]




SEARCH



Axonal

Axons 371

Neurons action potential

© 2024 chempedia.info