Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

NaBH

Boron tri-iodide, Blj (BClj plus HI at red heat or I2 plus NaBH ), m.p. 43°C, b.p. 2iO°C. It has very similar properties to boron trichloride. [Pg.66]

The tetrahydridoborate ion, as "sodium borohydride" NaBH is soluble in water and is similarly an excellent reducing agent in this solvent. (Lithium tetrahydridoaluminate cannot be used in water, with which it reacts violently to give hydrogen.)... [Pg.115]

This catalyst works in a similar manner to NaBHaCN except that it does not suffer from the same potential toxicity that NaBHaCN does. It is also different in that one can synthesize the damn stuff rather easily in one s own garage, as opposed to NaBHaCN which will require a very complicated and dangerous cyanide generation apparatus as is shown in the Chemicals section of this book. The following is about all Strike has on the making of the catalyst NaBH(OAc)3 [55] ... [Pg.120]

Treating a benzene suspension of sodium borohydride (4 equiv.) With glacial acetic acid (3.25 equiv.) And refluxing the mixture for 15 min under nitrogen, after the initial rapid gas evolution subsided (ca. 3 mol of Hz liberated) [No Smoking ], gave a clear solution of NaBH(OAc)3. ... [Pg.120]

As you are about to see, the standard methods for using the NaBH(OAc)3 catalyst call for it to be in a dried, powder form. Strike supposes the benzene in the above reaction can be distilled off to leave dry catalyst. But don t quote Strike on that Maybe it could be made in situ in the DCE solvent of the reaction to come (don t ask). Aw hell Just go and buy the shit ... [Pg.121]

Hydrides are available in many molecular sizes and possessing different reactivities. LiAIH reduces most unsaturated groups except alkenes and alkynes. NaBH is less reactive and reduces only aldehydes and ketones, but usually no carboxylic acids or esters (N.G. Gaylord, 1956 A. Haj6s, 1979). [Pg.96]

Synthetically useful stereoselective reductions have been possible with cyclic carbonyl compounds of rigid conformation. Reduction of substituted cyclohexanone and cyclopentan-one rings by hydrides of moderate activity, e.g. NaBH (J.-L. Luche, 1978), leads to alcohols via hydride addition to the less hindered side of the carbonyl group. Hydrides with bulky substituents 3IQ especially useful for such regio- and stereoselective reductions, e.g. lithium hydrotri-t-butoxyaluminate (C.H. Kuo, 1968) and lithium or potassium tri-sec-butylhydro-borates or hydrotri-sec-isoamylborates (=L-, K-, LS- and KS-Selectrides ) (H.C. Brown, 1972 B C.A. Brown, 1973 S. Krishnamurthy, 1976). [Pg.107]

Allylic amines can be cleaved. Hydrogenolysis of allylic amines of different stereochemistry with NaBH CN was applied to the preparation of both dia-stereoisomers 655 and 657 of cyclopentenylglycine from the cyclic amines 654 and 656 of different stereochemistry[405]. [Pg.379]

A traditional method for such reductions involves the use of a reducing metal such as zinc or tin in acidic solution. Examples are the procedures for preparing l,2,3,4-tetrahydrocarbazole[l] or ethyl 2,3-dihydroindole-2-carbox-ylate[2] (Entry 3, Table 15.1), Reduction can also be carried out with acid-stable hydride donors such as acetoxyborane[4] or NaBHjCN in TFA[5] or HOAc[6]. Borane is an effective reductant of the indole ring when it can complex with a dialkylamino substituent in such a way that it can be delivered intramolecularly[7]. Both NaBH -HOAc and NaBHjCN-HOAc can lead to N-ethylation as well as reduction[8]. This reaction can be prevented by the use of NaBHjCN with temperature control. At 20"C only reduction occurs, but if the temperature is raised to 50°C N-ethylation occurs[9]. Silanes cun also be used as hydride donors under acidic conditions[10]. Even indoles with EW substituents, such as ethyl indole-2-carboxylate, can be reduced[ll,l2]. [Pg.145]

Although a few simple hydrides were known before the twentieth century, the field of hydride chemistry did not become active until around the time of World War II. Commerce in hydrides began in 1937 when Metal Hydrides Inc. used calcium hydride [7789-78-8J, CaH2, to produce transition-metal powders. After World War II, lithium aluminum hydride [16853-85-3] LiAlH, and sodium borohydride [16940-66-2] NaBH, gained rapid acceptance in organic synthesis. Commercial appHcations of hydrides have continued to grow, such that hydrides have become important industrial chemicals manufactured and used on a large scale. [Pg.297]

Sodium Borohydride. Sodium borohydride [16940-66-2] is a thermally stable, white crystalline soHd that decomposes in vacuo above 400°C. The heat of formation is —192 kJ/mol (—45.9 kcal/mol). NaBH is hygroscopic and absorbs water rapidly from moist air to form a dihydrate that decomposes slowly to sodium metaborate and hydrogen. It is soluble in many solvents including water, alcohols, Hquid ammonia and amines, glycol ethers, and dimethyl sulfoxide. [Pg.302]

The decomposition rate of NaBH solutions in water is convenientiy estimated from equation 23 which expresses half-life in terms of the two most important variables, pH and temperature when is in minutes and Tis in K (23). [Pg.302]

Solutions of NaBH in methanol, and to a lesser degree ethanol, are subject to a similar decomposition reaction that evolves hydrogen these solutions can be stabilized by alkaU. The solubiUty of NaBH in lower aUphatic alcohols decreases as the carbon chain length increases, but the stabiUty increases. Solutions in 2-propanol and /-butanol are stable without alkaU (22,24). [Pg.302]

The inorganic reductions of NaBH are numerous and varied (Table 7). Comparatively few anions are reduced, yet the reduction of bisulfite to dithionite (hydrosulfite) (25), which is used in the pulp (qv) and paper (qv), clay (see Clays), and vat dyeing industries, is an important inorganic appHcation ofNaBH,. [Pg.302]


See other pages where NaBH is mentioned: [Pg.20]    [Pg.42]    [Pg.95]    [Pg.120]    [Pg.121]    [Pg.141]    [Pg.170]    [Pg.280]    [Pg.98]    [Pg.98]    [Pg.110]    [Pg.111]    [Pg.112]    [Pg.162]    [Pg.274]    [Pg.146]    [Pg.146]    [Pg.146]    [Pg.150]    [Pg.151]    [Pg.99]    [Pg.33]    [Pg.233]    [Pg.299]    [Pg.300]    [Pg.301]    [Pg.301]    [Pg.301]    [Pg.301]    [Pg.301]    [Pg.301]    [Pg.301]    [Pg.302]   
See also in sourсe #XX -- [ Pg.3 , Pg.804 ]

See also in sourсe #XX -- [ Pg.285 , Pg.339 ]

See also in sourсe #XX -- [ Pg.159 ]




SEARCH



Aldehyde reaction with NaBH

Aldehydes, reduction with NaBH

Aldose reaction with NaBH

Amines, NaBH

Amino acids, reduction using NaBH

Anhydrides reduction with NaBH

HPLC separation of aqueous Tc(NaBH,)-HEDP

Hydroboration with NaBH

Ketone reaction with NaBH

Organomercury compounds, reaction with NaBH

Reduction Using NaBH

Reduction by NaBH

Reduction with NaBH

Reductive amination with NaBH

Sodium borohydride (NaBH

Sodium tetrahydroborate NaBH

With NaBH

© 2024 chempedia.info