Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Myocardial infarction treatment

Plasminogen, an inactive precursor, is activated to plasmin which as a protease is able to break down fibrin clots. The thrombolytic agents in use promote the conversion of plasminogen to plasmin at the site of a thrombus. Indications include post-myocardial infarction treatment. The thrombolytic must be administered within 6 hours for an optimal effect. Other indications are treatment of acute pulmonary thromboembolism, deep-vein thrombosis, acute arterial thrombosis and thromboembolism, as well as in the clearance of arteriovenous catheters and can-nulae. Agents are streptokinase, anistreplase, urokinase, alteplase, reteplase and tenecteplase. [Pg.374]

B. Indications and use TNKase is indicated for use in the reduction of mortality associated with acute myocardial infarction. Treatment should be initiated as soon as possible after the onset of symptoms. [Pg.266]

Roe MT, Parsons LS, Pollack CV, Jr, et al. National Registry of Myocardial Infarction Investigators. Quality of care by classification of myocardial infarction treatment patterns for ST-segment elevation vs non-ST-segment elevation myocardial infarction. Arch Intern Med 2005 165 1630-6. [Pg.320]

Rogers WJ, Canto JG, Barron HV, et al. for the investigators in the National Registry of Myocardial Infarction. Treatment and ontcome of myocardial infarction in hospitals with and without invasive capability. J Am CoU Cardiol 2000 35 371-379. [Pg.113]

The dmg is effective in the treatment of ventricular arrhythmias, especially those following acute myocardial infarctions (1,2,22). [Pg.113]

Nitroglycerin remains the dmg of choice for treatment of angina pectoris. It has also been found useful for the treatment of congestive heart failure, myocardial infarction, peripheral vascular disease, such as Raynaud s disease, and mitral insufficiency, although the benefits of nitroglycerin in mitral insufficiency have been questioned. [Pg.125]

It is well accepted that hypertension is a multifactorial disease. Only about 10% of the hypertensive patients have secondary hypertension for which causes, ie, partial coarctation of the renal artery, pheochromacytoma, aldosteronism, hormonal imbalances, etc, are known. The hallmark of hypertension is an abnormally elevated total peripheral resistance. In most patients hypertension produces no serious symptoms particularly in the early phase of the disease. This is why hypertension is called a silent killer. However, prolonged suffering of high arterial blood pressure leads to end organ damage, causing stroke, myocardial infarction, and heart failure, etc. Adequate treatment of hypertension has been proven to decrease the incidence of cardiovascular morbidity and mortaUty and therefore prolong life (176—183). [Pg.132]

Thrombolytic Enzymes. Although atherosclerosis and the accompanying vascular wall defects are ultimately responsible for such diseases as acute pulmonary embolism, arterial occlusion, and myocardial infarction, the lack of blood flow caused by a fibrin clot directly results in tissue injury and in the clinical symptoms of these devastating diseases (54). Thrombolytic enzyme therapy removes the fibrin clot by dissolution, and has shown promise in the treatment of a number of thrombo-occlusive diseases (60). [Pg.309]

Indications for treatment with streptokinase include acute occlusion of arteries, deep vein thrombosis, and pulmonary embolism. Streptokinase therapy in coronary thrombosis, which is the usual cause of myocardial infarction (54,71,72), has proved to be valuable. In this frequently fatal condition, the enzyme is adrninistered intravenously at a dose of 1.5 million units over 60 min, or given by intracoronary infusion at a 20,000- to 50,000-unit bolus dose followed by 2000 to 4000 units/min for 60 min therapy must be instituted as soon as practicable after the diagnosis of heart attack is made. For deep vein thrombosis, pulmonary embolism, or arterial occlusion, streptokinase is infused at a loading dose of 250,000 units given over 30 min, followed by a maintenance dose of 100,000 units over a 60-min period. [Pg.309]

Compared to streptokinase, urokinase has been less extensively studied because of its high cost, ie, about 10 times that of a comparable treatment with streptokinase. In addition to the indications described for streptokinase, urokinase is indicated for use in patients with prior streptokinase treatment, or prior Streptococcal infection. Urokinase is commonly used at a loading dose of 4400 units /kg, with a maintenance intravenous infusion dose of 4400 units/kg/h for thromboses other than acute myocardial infarction. In the latter case, a much larger dose, ie, 0.5—2.0 million units/h or a bolus dose of 1.0 million units followed by a 60-min infusion with 1.0 million units, has been found optimal (106). An intracoronary dose of 2000 units/min for two hours was used in one comparative study with intracoronary streptokinase (107). In this study, urokinase exhibited efficacy equivalent to streptokinase with fewer side effects. Other studies with intracoronary urokinase have adrninistered doses ranging from 2,000 to 24,000 units/min with a reperfusion efficacy of 60—89% (108—112). In another urokinase trial, 2.0 million units were adrninistered intravenously, resulting in a thrombolytic efficacy of 60% (113). Effectiveness in terms of reduction in mortaUty rate has not been deterrnined because of the small number of patients studied. [Pg.310]

Fondaparinux, the factor Xa-binding pentasaccharide (Arixtra, MW 1,728 Da), is prepared synthetically, unlike UFH, LMWH and danaparoid, which are obtained from animal sources. Despite only inactivating free factor Xa, clinical trials indicate that fondaparinux is an effective antithrombotic agent, both for venous thromboembolism prophylaxis and treatment, as well as for acute coronary syndrome and ST elevation myocardial infarction [4]. [Pg.110]

Therapeutically t-PA and urokinase are the most important drugs for fibrinolytic therapy (myocardial infarction, stroke, massive pulmonary embolism). This treatment is associated with an enhanced risk of bleeding complications. [Pg.380]

These dm are primarily used in the treatment of hypertension (see the Summary Drug Table Adrenergic Blocking Drugs also see Chap. 39) and certain cardiac arrhythmias (abnormal rhythm of the heart), such as ventricular arrhythmias or supraventricular tachycardia They are used to prevent reinfarction in patients with a recent myocardial infarction (1—4 weeks after MI). Some of these dm have additional uses, such as the use of propranolol for migraine headaches and nadolol for angina pectoris. [Pg.214]

Serious adverse effects of epinephrine potentially occur when it is given in an excessive dose, or too rapidly, for example, as an intravenous bolus or a rapid intravenous infusion. These include ventricular dysrhythmias, angina, myocardial infarction, pulmonary edema, sudden sharp increase in blood pressure, and cerebral hemorrhage. The risk of epinephrine adverse effects is also potentially increased in patients with hypertension or ischemic heart disease, and in those using (3-blockers (due to unopposed epinephrine action on vascular Ui-adrenergic receptors), monoamine oxidase inhibitors, tricyclic antidepressants, or cocaine. Even in these patients, there is no absolute contraindication for the use of epinephrine in the treatment of anaphylaxis [1,5,6]. [Pg.213]


See other pages where Myocardial infarction treatment is mentioned: [Pg.50]    [Pg.132]    [Pg.439]    [Pg.174]    [Pg.604]    [Pg.455]    [Pg.50]    [Pg.132]    [Pg.439]    [Pg.174]    [Pg.604]    [Pg.455]    [Pg.338]    [Pg.430]    [Pg.177]    [Pg.122]    [Pg.213]    [Pg.310]    [Pg.312]    [Pg.49]    [Pg.145]    [Pg.170]    [Pg.299]    [Pg.305]    [Pg.604]    [Pg.1106]    [Pg.1297]    [Pg.608]   


SEARCH



Alteplase, myocardial infarction treatment

Aspirin myocardial infarction treatment

Heart failure treatment myocardial infarction

Heparin, myocardial infarction treatment

Infarct

Infarct, myocardial

Infarction

Myocardial infarction

Myocardial infarction acute, treatment

Myocardial infarction initial treatment

Myocardial infarction treatment regimens

Myocardial infarction, treatment angiotensin-converting enzyme

Myocardial infarction, treatment inhibitors

Myocardial ischemia and infarction treatment

Reteplase, myocardial infarction treatment

Streptokinase, myocardial infarction treatment

Timolol, myocardial infarction treatment

© 2024 chempedia.info