Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Multiple fiber composite model

A modified shear-lag model has been proposed by Rosen (1964, 1965) based on a multiple fiber composite. Fig. 4.4 shows the composite model Rosen considered wherein a fiber is embedded in a matrix which in turn is surrounded by an average composite material. The FAS and IFSS are given in the same form as those of Eqs. (4.1) and (4.2) given earlier by Cox (1952) ... [Pg.99]

A model of such structures has been proposed that captures transport phenomena of both substrates and redox cosubstrate species within a composite biocatalytic electrode.The model is based on macrohomo-geneous and thin-film theories for porous electrodes and accounts for Michaelis—Menton enzyme kinetics and one-dimensional diffusion of multiple species through a porous structure defined as a mesh of tubular fibers. In addition to the solid and aqueous phases, the model also allows for the presence of a gas phase (of uniformly contiguous morphology), as shown in Figure 11, allowing the treatment of high-rate gas-phase reactant transport into the electrode. [Pg.643]

Bauer et al. describe the use of a noncontact probe coupled by fiber optics to an FT-Raman system to measure the percentage of dry extractibles and styrene monomer in a styrene/butadiene latex emulsion polymerization reaction using PLS models [201]. Elizalde et al. have examined the use of Raman spectroscopy to monitor the emulsion polymerization of n-butyl acrylate with methyl methacrylate under starved, or low monomer [202], and with high soUds-content [203] conditions. In both cases, models could be built to predict multiple properties, including solids content, residual monomer, and cumulative copolymer composition. Another study compared reaction calorimetry and Raman spectroscopy for monitoring n-butyl acrylate/methyl methacrylate and for vinyl acetate/butyl acrylate, under conditions of normal and instantaneous conversion [204], Both techniques performed well for normal conversion conditions and for overall conversion estimate, but Raman spectroscopy was better at estimating free monomer concentration and instantaneous conversion rate. However, the authors also point out that in certain situations, alternative techniques such as calorimetry can be cheaper, faster, and often easier to maintain accurate models for than Raman spectroscopy, hi a subsequent article, Elizalde et al. found that updating calibration models after... [Pg.223]

Given the existence of interphases and the multiplicity of components and reactions that interact to form it, a predictive model for a priori prediction of composition, size, structure or behavior is not possible at this time except for the simplest of systems. An in-situ probe that can interogate the interphase and provide spatial chemical and morphological information does not exist. Interfacial static mechanical properties, fracture properties and environmental resistance have been shown to be grealy affected by the interphase. Careful analytical interfacial investigations will be required to quantify the interphase structure. With the proper amount of information, progress may be made to advance the ability to design composite materials in which the interphase can be considered as a material variable so that the proper relationship between composite components will be modified to include the interphase as well as the fiber and matrix (Fig. 26). [Pg.30]


See other pages where Multiple fiber composite model is mentioned: [Pg.93]    [Pg.95]    [Pg.144]    [Pg.150]    [Pg.353]    [Pg.161]    [Pg.285]    [Pg.160]    [Pg.222]    [Pg.403]    [Pg.172]    [Pg.403]    [Pg.450]    [Pg.321]    [Pg.92]    [Pg.148]    [Pg.259]    [Pg.165]    [Pg.133]    [Pg.113]    [Pg.114]   
See also in sourсe #XX -- [ Pg.139 ]




SEARCH



Composite modeling

Fiber Composite Model

Model multiple

Multiple fiber composite

© 2024 chempedia.info