Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Multiple bonds oxidation

This special feature arises from the combination of the transition metal behavior such as the coordination of a carbon-carbon multiple bond, oxidative addition, reductive elimination, P-hydride elimination, addition reactions and the behavior of classical c-carbanion towards electrophiles. [Pg.530]

The time is apt for chemists to fully enter the world of functionalized organozirconium and organotitanium chemistry. Both of these metal complexes are versatile intermediates due to their ambiphilic nature (1) utilization of these complexes as a source of carbanions (carbon-metal <7-bond) (2) Utilization of these complexes is based on late transition-metal behavior, such as coordination of a carbon-carbon multiple bond, oxidative addition, reductive elimination, j8-hydride elimination or addition reaction [1],... [Pg.503]

The most general methods for the syntheses of 1,2-difunctional molecules are based on the oxidation of carbon-carbon multiple bonds (p. 117) and the opening of oxiranes by hetero atoms (p. 123fl.). There exist, however, also a few useful reactions in which an a - and a d -synthon or two r -synthons are combined. The classical polar reaction is the addition of cyanide anion to carbonyl groups, which leads to a-hydroxynitriles (cyanohydrins). It is used, for example, in Strecker s synthesis of amino acids and in the homologization of monosaccharides. The ff-hydroxy group of a nitrile can be easily substituted by various nucleophiles, the nitrile can be solvolyzed or reduced. Therefore a large variety of terminal difunctional molecules with one additional carbon atom can be made. Equally versatile are a-methylsulfinyl ketones (H.G. Hauthal, 1971 T. Durst, 1979 O. DeLucchi, 1991), which are available from acid chlorides or esters and the dimsyl anion. Carbanions of these compounds can also be used for the synthesis of 1,4-dicarbonyl compounds (p. 65f.). [Pg.50]

Oxidation of Carbon Atoms in Carbon-Carbon Multiple Bonds... [Pg.123]

Out first example is 2-hydroxy-2-methyl-3-octanone. 3-Octanone can be purchased, but it would be difficult to differentiate the two activated methylene groups in alkylation and oxidation reactions. Usual syntheses of acyloins are based upon addition of terminal alkynes to ketones (disconnection 1 see p. 52). For syntheses of unsymmetrical 1,2-difunctional compounds it is often advisable to look also for reactive starting materials, which do already contain the right substitution pattern. In the present case it turns out that 3-hydroxy-3-methyl-2-butanone is an inexpensive commercial product. This molecule dictates disconnection 3. Another practical synthesis starts with acetone cyanohydrin and pentylmagnesium bromide (disconnection 2). Many 1,2-difunctional compounds are accessible via oxidation of C—C multiple bonds. In this case the target molecule may be obtained by simple permanganate oxidation of 2-methyl-2-octene, which may be synthesized by Wittig reaction (disconnection 1). [Pg.201]

Oxidation. The oxidation reactions of organoboranes have been reviewed (5,7,215). Hydroboration—oxidation is an anti-Markovnikov cis-hydration of carbon—carbon multiple bonds. The standard oxidation procedure employs 30% hydrogen peroxide and 3 M sodium hydroxide. The reaction proceeds with retention of configuration (216). [Pg.314]

The accessibility of the +4 and +6 oxidation states for sulfur and, to a lesser extent, selenium gives rise to both acyclic and cyclic molecules that have no parallels in N-O chemistry. Thus there is an extensive chemistry of chalcogen diimides RN=E=NR (E = S, Se, Te) (Section 10.4). In the case of Te these unsaturated molecules form dimeric structures reflecting the increasing reluctance for the heavier chalcogens to form multiple bonds to nitrogen. The acyclic molecule N=Sp3,... [Pg.8]

The intriguing radical cation [Te N(SiMe3)2 2] " is formed (as the blue AsFg salt) by oxidation of Te[N(SiMc3)2]2 with AsFs. This deep blue salt is monomeric in the solid state with d(Te-N) = 1.97 A, consistent with multiple bonding. The broad singlet in the EPR spectrum indicates that the unpaired electron is located primarily on the tellurium... [Pg.201]

It can also act as a chlorofluorinating agent by addition across a multiple bond and/or by oxidation, e.g. ... [Pg.826]

Compared to the sum of covalent radii, metal-silicon single bonds are significantly shortened. This phenomenon is explained by a partial multiple bonding between the metal and silicon [62]. A comparison of several metal complexes throughout the periodic table shows that the largest effects occur with the heaviest metals. However, conclusions drawn concerning the thermodynamic stability of the respective M —Si bonds should be considered with some reservation [146], since in most cases the compared metals show neither the same coordination geometries nor the same oxidation states. [Pg.21]

The role of steric influences on the formation of various vanadium amidinate complexes in the oxidation states +2 and +3 has been studied in detail. The reaction of VCl2(TMEDA)2 and of VCl3(THF)3 with 2 equivalents of formamidinate salts afforded dimeric V2[HC(NCy)2l4 (cf. Section IV.E) with a very short V-V multiple bond and [ [HC(NCy)2 V(/i-Cl)l2 which is also dimeric (Scheme 107). The formation of V2[HC(NCy)2l4 was shown to proceed through the intermediate monomeric [HC(NCy)2l2V(TMEDA), which was isolated and fully characterized. The dinuclear structure was reversibly cleaved by treatment with pyridine forming the monomeric [HC(NCy)2l2V(py)2. ... [Pg.261]

In Part 2 of this book, we shall be directly concerned with organic reactions and their mechanisms. The reactions have been classified into 10 chapters, based primarily on reaction type substitutions, additions to multiple bonds, eliminations, rearrangements, and oxidation-reduction reactions. Five chapters are devoted to substitutions these are classified on the basis of mechanism as well as substrate. Chapters 10 and 13 include nucleophilic substitutions at aliphatic and aromatic substrates, respectively, Chapters 12 and 11 deal with electrophilic substitutions at aliphatic and aromatic substrates, respectively. All free-radical substitutions are discussed in Chapter 14. Additions to multiple bonds are classified not according to mechanism, but according to the type of multiple bond. Additions to carbon-carbon multiple bonds are dealt with in Chapter 15 additions to other multiple bonds in Chapter 16. One chapter is devoted to each of the three remaining reaction types Chapter 17, eliminations Chapter 18, rearrangements Chapter 19, oxidation-reduction reactions. This last chapter covers only those oxidation-reduction reactions that could not be conveniently treated in any of the other categories (except for oxidative eliminations). [Pg.381]

Intramolecular nitrone cycloadditions often require higher temperatures as nitrones react more sluggishly with alkenes than do nitrile oxides and the products contain a substituent on nitrogen which may not be desirable. Conspicuously absent among various nitrones employed earlier have been NH nitrones, which are tautomers of the more stable oximes. However, Grigg et al. [58 a] and Padwa and Norman [58b] have demonstrated that under certain conditions oximes can undergo addition to electron deficient olefins as Michael acceptors, followed by cycloadditions to multiple bonds. We found that intramolecular oxime-olefin cycloaddition (lOOC) can occur thermally via an H-nitrone and lead to stereospecific introduction of two or more stereocenters. This is an excellent procedure for the stereoselective introduction of amino alcohol functionality via N-0 bond cleavage. [Pg.30]

Apart from the hardness and softness, two reactivity-related features need to be pointed out. First, iron salts (like most transition metal salts) can operate as bifunctional Lewis acids activating either (or both) carbon-carbon multiple bonds via 71-binding or (and) heteroatoms via a-complexes. However, a lower oxidation state of the catalyst increases the relative strength of coordination to the carbon-carbon multiple bonds (Scheme 1). [Pg.3]


See other pages where Multiple bonds oxidation is mentioned: [Pg.644]    [Pg.6]    [Pg.644]    [Pg.632]    [Pg.191]    [Pg.191]    [Pg.452]    [Pg.644]    [Pg.6]    [Pg.644]    [Pg.632]    [Pg.191]    [Pg.191]    [Pg.452]    [Pg.15]    [Pg.81]    [Pg.139]    [Pg.342]    [Pg.9]    [Pg.9]    [Pg.9]    [Pg.10]    [Pg.40]    [Pg.73]    [Pg.333]    [Pg.416]    [Pg.473]    [Pg.846]    [Pg.1005]    [Pg.375]    [Pg.806]    [Pg.444]    [Pg.236]    [Pg.745]    [Pg.185]    [Pg.228]    [Pg.69]    [Pg.20]   
See also in sourсe #XX -- [ Pg.1527 ]




SEARCH



Multiple oxides

Oxidation of Unsaturated Alcohols at Multiple Bonds

Oxidation of Unsaturated Ethers at Multiple Bonds

Oxides bonding

© 2024 chempedia.info