Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Multi component interaction

It is important to select stoichiometric co-reductants or co-oxidants for the reversible cycle of a catalyst. A metallic co-reductant is ultimately converted to the corresponding metal salt in a higher oxidation state, which may work as a Lewis acid. Taking these interactions into account, the requisite catalytic system can be attained through multi-component interactions. Stereoselectivity should also be controlled, from synthetic points of view. The stereoselective and/or stereospecific transformations depend on the intermediary structure. The potential interaction and structural control permit efficient and selective methods in synthetic radical reactions. This chapter describes the construction of the catalytic system for one-electron reduction reactions represented by the pinacol coupling reaction. [Pg.65]

As it has been already mentioned in the Introduction, aminoazoles besides the role of 1,3-binucleophiles can take part in the MCRs as 1,1-binucleophiles with participation of exclusively exocyclic NH2-group. Usual products of such multi-component interaction are five-membered heterocycles having azole ring as a substituent. [Pg.75]

It is possible to express any molecular interaction semi-quantitatively, independent of the type of interaction involved. All particle-particle, particle-surface, surface-surface and sometimes even complex multi-component interactions obey the combining rules of molecular interactions, except hydrogen-bonding interactions. [Pg.252]

Multi Component Interaction. Application of an adsorption model in the natural environment is an appealing perspective and its success is built on the capability to describe the interaction of ions in multi component systems. This interaction can be synergistic, as found for Cd and PO4 or can be antagonistic like the competition between phosphate and sulphate. [Pg.83]

The saturation coverage during chemisorption on a clean transition-metal surface is controlled by the fonnation of a chemical bond at a specific site [5] and not necessarily by the area of the molecule. In addition, in this case, the heat of chemisorption of the first monolayer is substantially higher than for the second and subsequent layers where adsorption is via weaker van der Waals interactions. Chemisorption is often usefLil for measuring the area of a specific component of a multi-component surface, for example, the area of small metal particles adsorbed onto a high-surface-area support [6], but not for measuring the total area of the sample. Surface areas measured using this method are specific to the molecule that chemisorbs on the surface. Carbon monoxide titration is therefore often used to define the number of sites available on a supported metal catalyst. In order to measure the total surface area, adsorbates must be selected that interact relatively weakly with the substrate so that the area occupied by each adsorbent is dominated by intennolecular interactions and the area occupied by each molecule is approximately defined by van der Waals radii. This... [Pg.1869]

Pd(II) was shown to be separated from Ni(II), Cr(III) and Co(III) by ACs completely, and only up to 3 % of Cu(II) and Fe(II) evaluate from solution together with Pd(II), this way practically pure palladium may be obtained by it s sorption from multi-component solutions. The selectivity of Pd(II) evaluation by ACs was explained by soi ption mechanism, the main part of which consists in direct interaction of Pd(II) with 7t-conjugate electron system of carbon matrix and electrons transfer from carbon to Pd(II), last one can be reduced right up to Pd in dependence on reducing capability of AC. [Pg.70]

The multi-component procedure is also effective for the chromium-catalyzed addition of organic halides to aldehydes (the Nozaki-Hiyama-Kishi reaction) [73]. The active Cr(II) species is recycled by redox interaction with Mn powder as the stoichiometric co-reductant in the presence of MesSiCl (Scheme 34), which mainly liberates the chromium catalyst from the alkoxide adduct. The chemo- and diastereo-selective addition reaction is performed with a variety of organic halides and alkenyl triflates. In the case of crotyl bromide, the addition is highly stereoconvergent, i.e., the respective anti-... [Pg.81]

The multi-component systems developed quite recently have allowed the efficient metal-catalyzed stereoselective reactions with synthetic potential [75-77]. Multi-components including a catalyst, a co-reductant, and additives cooperate with each other to construct the catalytic systems for efficient reduction. It is essential that the active catalyst is effectively regenerated by redox interaction with the co-reductant. The selection of the co-reductant is important. The oxidized form of the co-reductant should not interfere with, but assist the reduction reaction or at least, be tolerant under the conditions. Additives, which are considered to contribute to the redox cycle directly, possibly facilitate the electron transfer and liberate the catalyst from the reaction adduct. Co-reductants like Al, Zn, and Mg are used in the catalytic reactions, but from the viewpoint of green chemistry, an electron source should be environmentally harmonious, such as H2. [Pg.83]

It is very difficult to cool pure metals and other pure elements fast enough to form glasses. However, metallic alloys can often be converted into glasses, particularly if they contain a mixture of small and large atoms such as iron and boron, or they are multi-component mixtures of metals that crystallize into more than one intermetallic compound (i.e., eutectic compositions). Thus, covalent chemical interactions of the atoms are important because they stabilize liquids and thereby inhibit crystallization. [Pg.171]

Because of the importance of particle surface charge in chemical interactions of components of the aqueous fibre and filler suspension, paper makers would like to know the charge characteristics of all of the individual components of the aqueous suspension. However, such information is difficult to obtain experimentally, and some kind of average value is normally the best that can be hoped for in a multi-component system. The techniques used to determine furnish charge are usually one of those described below. [Pg.95]

For multi-component systems it seems intuitive that single-component diffusion and adsorption data would enable one to predict which component would be selectively passed through a membrane. This is only the case where molecular sieving is observed for all other separations where the molecules interact with one another and with the zeolite framework their behavior is determined by these interactions. Differences in membrane properties such as quahty, microstructure, composition and modification can also play a large role in the observed separation characteristics. In many cases, these properties can be manipulated in order to tailor a membrane for a specific apphcation or separation. [Pg.318]

Equation (5.21) assumes ternary interactions are small in comparison to those which arise from the binary terms. This may not always be the case and where evidence for higher-order interactions is evident these can be taken into account by a further term of the type Gijit = x< xj Xk Lijk, where Lijk is an excess ternary interaction parameter. There is little evidence for the need for interaction terms of any higher order than this and prediction of the thermodynamic properties of substitutional solution phases in multi-component alloys is usually based on an assessment of binary and ternary terms. Various other polynomial expressions for the excess term have been considered, see for example the reviews by Ansara (1979) and Hillert (1980). All are, however, based on predicting the properties of... [Pg.113]

The interaction parameters derived in this way are usually concentration-dependent, making for lengthy computations. It is therefore unlikely that this route will ever be adopted for multi-component calculations unless more efficient algorithms can be developed. Apart from this aspect, the method is attractive... [Pg.216]

It remains to be seen whether the CSA approximation will prove viable when applied to multi-component systems, but it does appear to be a useful compromise. So far the method has also been restricted to only first- and second-neighbour interactions clearly any extension to longer-range forces will start to offset its current advantages in terms of computing time. [Pg.222]

Let us take the example of a simple commercial alloy such as Ti-6AI-4V. This is the most popular structural Ti alloy used worldwide. Essentially one would need to consider Ti-AI, Ti-V and Al-V binary interactions and Ti-Al-V ternary interactions. Unfortunately, although called Ti-6AI-4V, this alloy also contains small amounts of O, C, N and Fe and it therefore exists in the multi-component space within the Ti-Al-V-O-C-N-Fe system. There are then 21 potential binary... [Pg.328]

A systematic procedure can select optimal solvent blends for nonreactive, multi-component absorption processes accounting for plant-wide point source environmental interactions. This approach, based on the optimal design technique for pure solvents, involves the identification of all agent-based operations (such as gas absorption and... [Pg.286]

There have been few studies reported in the literature in the area of multi-component adsorption and desorption rate modeling (1, 2,3., 4,5. These have generally employed simplified modeling approaches, and the model predictions have provided qualitative comparisons to the experimental data. The purpose of this study is to develop a comprehensive model for multi-component adsorption kinetics based on the following mechanistic process (1) film diffusion of each species from the fluid phase to the solid surface (2) adsorption on the surface from the solute mixture and (3) diffusion of the individual solute species into the interior of the particle. The model is general in that diffusion rates in both fluid and solid phases are considered, and no restrictions are made regarding adsorption equilibrium relationships. However, diffusional flows due to solute-solute interactions are assumed to be zero in both fluid and solid phases. [Pg.27]


See other pages where Multi component interaction is mentioned: [Pg.2367]    [Pg.12]    [Pg.44]    [Pg.69]    [Pg.17]    [Pg.347]    [Pg.216]    [Pg.260]    [Pg.75]    [Pg.1107]    [Pg.130]    [Pg.131]    [Pg.88]    [Pg.187]    [Pg.25]    [Pg.41]    [Pg.119]    [Pg.326]    [Pg.328]    [Pg.328]    [Pg.329]    [Pg.63]    [Pg.117]    [Pg.61]    [Pg.135]    [Pg.253]    [Pg.111]    [Pg.275]    [Pg.79]    [Pg.131]    [Pg.487]   
See also in sourсe #XX -- [ Pg.83 ]




SEARCH



Interactive components

Metal oxides multi component interaction

Multi-components

© 2024 chempedia.info