Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Mukaiyama polymer-supported

Scheme7.112 Polymer-supported Mukaiyama reagent for amide synthesis. Scheme7.112 Polymer-supported Mukaiyama reagent for amide synthesis.
Highly efficient modifications of Mukaiyama s procedure, convenient for combinatorial syntheses, were reported recently, namely the polymer-supported synthesis of isoxazolines via nitrile oxides, starting from primary nitroalkanes, in a one-pot process (75) and by microwave activation of the process (73). [Pg.7]

Catalyzed enantioselective Mukaiyama-aldol reactions have been developed extensively [101] and chiral polymer-supported Lewis acids are the catalysts of choice. Polymer-supported chiral A(-sulfonyloxazaborohdinones 86 and 87, prepared by copolymerization of styrene, divinylbenzene, and chiral monomers derived from L-valine and L-glutamic acid, respectively, have been used for aldol reactions [102]. The rates of reaction using the polymeric catalysts were slow and enantioselectivity was lower than was obtained by use of the low-molecular-weight counterpart (88). The best ee obtained by use of the polymeric catalyst was 90 % ee with 28 % isolated yield in the asymmetric aldol reaction of benzaldehyde with 89 (Eq. 27). [Pg.972]

One of the most powerful catalysts of the Mukaiyama aldol reaction is a chiral Ti(IV)-Schiff base complex 91 prepared from Ti(0 Pr)4 and enantiomerically pure salicylaldimine reported by Carreira [103-105]. This catalyst furnished aldol adducts in good yields and with excellent enantioselectivity. The Ti(IV)-Schiff base catalyst system is unique among the aldol catalysts yet reported in terms of operational simplicity, catalyst efficiency, chirality transfer, and substrate generality. Because the Ti(IV)-Schiff base complexes are remarkably efficient catalysts for the addition of ketene acetals to a wide variety of aldehydes, the polymeric version of catalyst 92 was prepared [106]. The activity and enantioselectivity of the polymer-supported chiral Ti(IV)-Schiff base complex were, however, much lower than were obtained from the low-molecular-weight catalyst (Eq. 28). [Pg.973]

Optically active l,l -binaphthols are among the most important chiral ligands of a variety of metal species. Binaphthol-aluminum complexes have been used as chiral Lewis acid catalysts. The l,T-binaphthyl-based chiral ligands owe their success in a variety of asymmetric reactions to the chiral cavity they create around the metal center [107,108]. In contrast with the wide use of these binaphthyls, the polymer-supported variety has been less popular. The optically active and sterically regular poly(l,l -bi-naphthyls) 96 have been prepared by nickel-catalyzed dehalogenating polycondensation of dibromide monomer 95 (Sch. 7) [109] and used to prepare the polybinaphthyl aluminum(III) catalyst 97 this had much greater catalytic activity than the corresponding monomeric catalyst when used in the Mukaiyama aldol reaction (Eq. 29). Unfortunately no enantioselectivity was observed in the aldol reaction. [Pg.973]

In recent years, catalytic asymmetric Mukaiyama aldol reactions have emerged as one of the most important C—C bond-forming reactions [35]. Among the various types of chiral Lewis acid catalysts used for the Mukaiyama aldol reactions, chirally modified boron derived from N-sulfonyl-fS)-tryptophan was effective for the reaction between aldehyde and silyl enol ether [36, 37]. By using polymer-supported N-sulfonyl-fS)-tryptophan synthesized by polymerization of the chiral monomer, the polymeric version of Yamamoto s oxazaborohdinone catalyst was prepared by treatment with 3,5-bis(trifluoromethyl)phenyl boron dichloride ]38]. The polymeric chiral Lewis acid catalyst 55 worked well in the asymmetric aldol reaction of benzaldehyde with silyl enol ether derived from acetophenone to give [i-hydroxyketone with up to 95% ee, as shown in Scheme 3.16. In addition to the Mukaiyama aldol reaction, a Mannich-type reaction and an allylation reaction of imine 58 were also asymmetrically catalyzed by the same polymeric catalyst ]38]. [Pg.84]

The majority of reported solid-phase combinatorial syntheses of the lactam core utilize a [2-i-2] cycloaddition reaction of ketenes with resin-bound imines [33-41]. A further development of the Staudinger reaction was reported by Mata and coworkers using Mukaiyama s reagent [42]. In addition, a stereoselective synthesis of chi-rally pure P-lactams has been performed as a first utilization of polymer-supported oxazolidine aldehydes [43]. Other strategies include an ester enolate-imine condensation [44], an Hg(OCOCF3)2-mediated intramolecular cydization [45], and Miller hydroxamate synthesis [46]. Because of the variability derived from the scaffold synthesis, not many attempts have been made to derivatize the resin-bound lactam template [47]. One of the most detailed descriptions of a versatile (3-lactam synthesis on a resin employed amino acids tethered as esters on Sasrin resin [48]. [Pg.375]

Polymer supported pyridinium salts, such as Mukaiyama reagent, have proven very useful synthetic tools in the preparation of 2-oxazoline libraries 05JC0688> and in automatable esterification reactions <05TL2817>. Yamamoto et al. have examined the use of polymer supported boronopyridinium salts for the preparation of amides and esters in good to excellent yield <050L5043,05TL5047>. [Pg.320]

Reagent 13 was also used under microwave conditions to create a library of esters.7 Another polymer supported version of Mukaiyama s reagent (16) was disclosed by Swinnen.8... [Pg.464]

The first use of a polymer-supported Mukaiyama reagent for microwave-mediated synthesis of amides was presented in 2004 [125]. To prove its effectiveness, even in difficult coupling reactions, it was used in the microwave-accelerated synthesis of an amide from sterically hindered pivalic acid (Scheme 16.83). The mixture was subjected to microwave irradiation at 100 °C for 10 min and the desired product was obtained in 80% yield. [Pg.776]

Scheme 16.84. Solution-phase esterification by use of a polymer-supported Mukaiyama reagent. Scheme 16.84. Solution-phase esterification by use of a polymer-supported Mukaiyama reagent.
Scandium triflate-catalyzed aldol reactions of silyl enol ethers with aldehyde were successfully carried out in micellar systems and encapsulating systems. While the reactions proceeded sluggishly in water alone, strong enhancement of the reactivity was observed in the presence of a small amount of a surfactant. The effect of surfactant was attributed to the stabiMzation of enol silyl ether by it. Versatile carbon-carbon bondforming reactions proceeded in water without using any organic solvents. Cross-linked Sc-containing dendrimers were also found to be effective and the catalyst can be readily recycled without any appreciable loss of catalytic activity.Aldol reaction of 1-phenyl-l-(trimethylsilyloxy) ethylene and benzaldehyde was also conducted in a gel medium of fluoroalkyl end-capped 2-acrylamido-2-methylpropanesulfonic acid polymer. A nanostmctured, polymer-supported Sc(III) catalyst (NP-Sc) functions in water at ambient temperature and can be efficiently recycled. It also affords stereoselectivities different from isotropic solution and solid-state scandium catalysts in Mukaiyama aldol and Mannich-type reactions. [Pg.254]

Few other asymmetrie reactions have been performed using insoluble or soluble polymer-supported ligands. The first example is a Mukaiyama-aldol condensation between silyl ketene acetal and different aldehydes using polymeric Box analog of 99 as chiral ligands and Cu(OTf)2 as metal soiu ce in water (Scheme 147) [216]. When using benzaldehyde as substrate, yields were very low (12-34%) and ee were moderate (40-62%) whatever the polymer-supported Box. The same level of enantioseleetivity was observed with other aldehydes while the yield was better with all the ligand/Cu complexes used. [Pg.160]

While several resin- or polymer-supported Sc(OTf)3 catalysts have been developed and some of them are commercially available, a drawback of these catalysts is that their catalytic ability and reusability are still not satisfactory. Conceptually new methods, polymer incarcerated (PI) method and polymer-micelle incarcerated (PMI) have been developed to immobilize Sc(OTf)3 [100]. PMI Sc(OTf)3 is highly effective in several fundamental carbon-carbon bond-forming reactions, including Mukaiyama aldol, Mannich-type and Michael reactions. It is noted that the high catalytic activity in terms of TON (>7500) has been attained in Michael reaction. The catalyst was recovered quantitatively by simple filtration and reused several times without loss of catalytic activity, and no Sc leaching was observed in all the reactions (<0.1 ppm). [Pg.77]

LLC networks containing catalytic headgroups have also been shown to be useful for heterogeneous Lewis acid catalysis. The Sc(III)-exchanged cross-linked Hu phase of a taper-shaped sulfonate-functionalized LLC monomer has been shown to be able to catalyze the Mukaiyama aldol and Mannich reactions [115] with enhanced diastereoselectivity. This Sc(III)-functionalized Hu network affords condensation products with syn-to-anti diastereoselectivity ratios of 2-to-l, whereas Sc(III) catalysts in solution or supported on amorphous polymers show no reaction diastereoselectivity at all. [Pg.204]

Given the utility of chiral Cu(II)/bisoxazoline complexes in enantioselective Mukaiyama aldol reactions, a number of reports detailing the development of polymer-bound or dendritic bisoxazoline copper (I I) complexes have been developed. Development of such catalyst systems provides the potential for easy recovery and reuse of the relatively expensive catalyst. To this end, Salvadori and CO workers reported Mukaiyama aldol addition of ketene thioacetal (57) to methyl pyruvate catalyzed by a Cu(OTf)2 complex of polystyrene-supported bisoxazoline (89) (Scheme 17.18) [23]. The enantioselectivity of the addition remained high over eight cycles of the catalyst, however, reactivity was gradually reduced over time. [Pg.384]

Kobayashi and coworkers further developed a new immobilizing technique for metal catalysts, a PI method [58-61]. They originally used the technique for palladium catalysts, and then applied it to Lewis acids. The PI method was successfully used for the preparation of immobilized Sc(OTf)3. When copolymer (122) was used for the microencapsulation of Sc(OTf)3, remarkable solvent effects were observed. Random aggregation of copolymer (122)-Sc(OTf)3 was obtained in toluene, which was named as polymer incarcerated (PI) Sc(OTf)3. On the other hand, spherical micelles were formed in THF-cyclohexane, which was named polymer-micelle incarcerated (PMI) Sc(OTf)3.. PMI Sc(OTf)3 worked well in the Mukaiyama-aldol reaction of benzaldehyde with (123) and showed higher catalytic activity compared to that of PI Sc(OTf)3 mainly due to its larger surface area of PMI Sc(OTf)3. This catalyst was also used in other reactions such as Mannich-type (123) and (125) and Michael (127) and (128) reactions. For Michael reactions, inorganic support such as montmorilonite-enwrapped Scandium is also an efficient catalyst [62]. [Pg.508]

Polymer encapsulated and supported scandium trillate Lewis acid catalysts were used as heterogeneous Lewis acid catalysts for the Mukaiyama aldol reaction (Equation (8.61)) [118,126]. [Pg.264]


See other pages where Mukaiyama polymer-supported is mentioned: [Pg.145]    [Pg.273]    [Pg.372]    [Pg.407]    [Pg.108]    [Pg.13]    [Pg.976]    [Pg.85]    [Pg.433]    [Pg.1416]    [Pg.117]    [Pg.145]    [Pg.635]    [Pg.635]    [Pg.271]    [Pg.82]    [Pg.379]    [Pg.380]    [Pg.421]    [Pg.305]    [Pg.494]    [Pg.505]    [Pg.506]    [Pg.145]    [Pg.140]    [Pg.379]    [Pg.380]    [Pg.635]    [Pg.453]   
See also in sourсe #XX -- [ Pg.372 ]




SEARCH



Mukaiyama

Polymer-supported Mukaiyama reagent

© 2024 chempedia.info