Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Montmorillonite clays synthetic applications

Clays, natural or synthetic, are the most widely investigated and understood nanoadditives used to enhance the flame retardancy of polymers through nanocomposite technology, because of their unique properties, particularly the ease of surface treatment and application in polymer matrices. Clay can be cationic and anionic materials, in accordance with the charge on the clay layers. In this chapter, the focus is on two kinds of clays montmorillonite (MMT), a naturally occurring cationic clay that belongs to the smectite group of silicates, and LDH, an anionic clay that does occur naturally but for which the synthetic form is more common. Other clays will also be mentioned as appropriate. [Pg.263]

Pd-hexadecylammonium montmorillonite (Pd-HDAM) catalysts have been prepared by a novel synthetic route. Sample characterization including XRD and TEM measurements confirmed the existence of interlayer Pd nanocrystallites which occupy clay particle defect sites. The catalytic activities of Pd-HDAM samples were tested by hydrogenation of 1-octene and styrene in the liquid phase. The reaction of styrene was found to be less dependent on the dispersion of Pd than that of 1-octene. The highest activities were observed for samples of low and medium Pd content. The application of various solvents made it pos le to establish a correlation between the activities and the basal spacings dL of Pd-HDAM samples. When the value of dL exceeded 3 ran, interlamellar active sites became more accessible for reactants. [Pg.477]

Nanoclays can be categorized into cationic and anionic types. Cationic nanoclays are based on smectite clays. An example is montmorillonite (MMT), a hydrated Al, Mg silicate that may contain cations such as Na+ and Ca++ between the anionic layers. In contrast, anionic clays contain cationic layers and anions such as Cr and in the interlayer space. Typical examples include layered double hydroxides (LDH) and hydrotalcite (HT), a mostly synthetic hydrated magnesium and aluminum carbonate salt. Whereas MMT is commonly used as a nanofiller to improve thermal, mechanical, and barrier properties, LDHs have many attractive properties that lead to application as surfactant adsorbents, biohybrid materials, antacid food formulations, acid neutralizers, and active pharmaceutical ingredients excipients [37, 13, 28, 14, 35]. [Pg.144]

The research around the use of montmorillonite to obtaining nanocomposites polymer-MMT has become even more intense. In a review, Biswas and Ray [45] described several features of polymer-MMT nanocomposite materials. Ray and Okamoto [24] reported various characteristics of polymer-layered silicate nanocomposite materials, some of these materials exhibited distinctive properties like biodegradability. Ahmadi et al. [46] reviewed synthetic routes, properties, and future applications of polymer-layered nanocomposites. Significantly, nanocomposites of PAni and PPY with MMT clay via emulsion polymerization technique [47, 48] were found to act as electrorehological fluids, sometimes denominated smart fluids. In this context, Ballav and Biswas [49, 50] reported high yield oxidative polymerization of thiophene, aniline, pyrrole, and furan by MMT— without extraneous oxidant—vis-a-vis nanocomposites formation of the corresponding polymers with MMT. [Pg.150]


See other pages where Montmorillonite clays synthetic applications is mentioned: [Pg.291]    [Pg.86]    [Pg.2684]    [Pg.995]    [Pg.153]    [Pg.275]    [Pg.39]    [Pg.429]    [Pg.5]    [Pg.277]    [Pg.159]    [Pg.22]    [Pg.73]    [Pg.94]    [Pg.253]    [Pg.27]    [Pg.11]    [Pg.377]    [Pg.8]    [Pg.84]    [Pg.490]    [Pg.507]    [Pg.282]   
See also in sourсe #XX -- [ Pg.79 ]




SEARCH



Montmorillonite clays

Montmorillonite synthetic

Synthetic applications

Synthetic clays

© 2024 chempedia.info