Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Monte Carlo simulation molecules

In principle, simulation teclmiques can be used, and Monte Carlo simulations of the primitive model of electrolyte solutions have appeared since the 1960s. Results for the osmotic coefficients are given for comparison in table A2.4.4 together with results from the MSA, PY and HNC approaches. The primitive model is clearly deficient for values of r. close to the closest distance of approach of the ions. Many years ago, Gurney [H] noted that when two ions are close enough together for their solvation sheaths to overlap, some solvent molecules become freed from ionic attraction and are effectively returned to the bulk [12]. [Pg.583]

Harris J and Rice S A 1988 A lattice model of a supported monolayer of amphiphile molecules—Monte Carlo simulations J. Ohem. Phys. 88 1298-306... [Pg.2285]

The most important molecular interactions of all are those that take place in liquid water. For many years, chemists have worked to model liquid water, using molecular dynamics and Monte Carlo simulations. Until relatively recently, however, all such work was done using effective potentials [4T], designed to reproduce the condensed-phase properties but with no serious claim to represent the tme interactions between a pair of water molecules. [Pg.2449]

Figure C2.3.6. Illustration of micelle stmcture obtained by Monte Carlo simulations of model octanoate amphiphiles. There are 30 molecules simulated in this cluster. The shaded spheres represent headgroups. Reproduced by pennission from figure 2 of [35]. Figure C2.3.6. Illustration of micelle stmcture obtained by Monte Carlo simulations of model octanoate amphiphiles. There are 30 molecules simulated in this cluster. The shaded spheres represent headgroups. Reproduced by pennission from figure 2 of [35].
In some cases the atomic charges are chosen to reproduce thermodynamic properties calculated using a molecular dynamics or Monte Carlo simulation. A series of simulations is performed and the charge model is modified until satisfactory agreement with experiment is obtained. This approach can be quite powerful despite its apparent simplicity, but it is only really practical for small molecules or simple models. [Pg.207]

TIk experimentally determined dipole moment of a water molecule in the gas phase is 1.85 D. The dipole moment of an individual water molecule calculated with any of thv se simple models is significantly higher for example, the SPC dipole moment is 2.27 D and that for TIP4P is 2.18 D. These values are much closer to the effective dipole moment of liquid water, which is approximately 2.6 D. These models are thus all effective pairwise models. The simple water models are usually parametrised by calculating various pmperties using molecular dynamics or Monte Carlo simulations and then modifying the... [Pg.235]

Monte Carlo simulations require less computer time to execute each iteration than a molecular dynamics simulation on the same system. However, Monte Carlo simulations are more limited in that they cannot yield time-dependent information, such as diffusion coefficients or viscosity. As with molecular dynamics, constant NVT simulations are most common, but constant NPT simulations are possible using a coordinate scaling step. Calculations that are not constant N can be constructed by including probabilities for particle creation and annihilation. These calculations present technical difficulties due to having very low probabilities for creation and annihilation, thus requiring very large collections of molecules and long simulation times. [Pg.63]

Mesoscale simulations model a material as a collection of units, called beads. Each bead might represent a substructure, molecule, monomer, micelle, micro-crystalline domain, solid particle, or an arbitrary region of a fluid. Multiple beads might be connected, typically by a harmonic potential, in order to model a polymer. A simulation is then conducted in which there is an interaction potential between beads and sometimes dynamical equations of motion. This is very hard to do with extremely large molecular dynamics calculations because they would have to be very accurate to correctly reflect the small free energy differences between microstates. There are algorithms for determining an appropriate bead size from molecular dynamics and Monte Carlo simulations. [Pg.273]

Monte Carlo simulations are an efficient way of predicting liquid structure, including the preferred orientation of liquid molecules near a surface. This is an efficient method because it is not necessary to compute energy derivatives, thus reducing the time required for each iteration. The statistical nature of these simulations ensures that both enthalpic and entropic effects are included. [Pg.302]

Monte Carlo simulations are commonly used to compute the average thermodynamic properties of a molecule or a system of molecules, and have been employed extensively in the study of the structure and equilibrium properties of liquids and solutions. Monte Carlo methods have also been used to conduct conformational searches under non-equilibrium conditions. [Pg.95]

The idea of a finite simulation model subsequently transferred into bulk solvent can be applied to a macromolecule, as shown in Figure 5a. The alchemical transformation is introduced with a molecular dynamics or Monte Carlo simulation for the macromolecule, which is solvated by a limited number of explicit water molecules and otherwise surrounded by vacuum. Then the finite model is transferred into a bulk solvent continuum... [Pg.188]

R. Dickman, C. K. Hall. High density Monte Carlo simulations of chain molecules Bulk equation of state and density profile near walls. J Chem Phys 59 3168-3174, 1988. [Pg.627]

The relative fluctuations in Monte Carlo simulations are of the order of magnitude where N is the total number of molecules in the simulation. The observed error in kinetic simulations is about 1-2% when lO molecules are used. In the computer calculations described by Schaad, the grids of the technique shown here are replaced by computer memory, so the capacity of the memory is one limit on the maximum number of molecules. Other programs for stochastic simulation make use of different routes of calculation, and the number of molecules is not a limitation. Enzyme kinetics and very complex oscillatory reactions have been modeled. These simulations are valuable for establishing whether a postulated kinetic scheme is reasonable, for examining the appearance of extrema or induction periods, applicability of the steady-state approximation, and so on. Even the manual method is useful for such purposes. [Pg.114]

In the second group come molecular dynamics and Monte Carlo simulations, especially those where the solvent is modelled without being explicitly included. Their fourth class is the related supermolecule class, where we actually include solvent molecules in the simulation, and treat the entire array of molecules according to the rules of quantum mechanics or whatever. [Pg.255]


See other pages where Monte Carlo simulation molecules is mentioned: [Pg.579]    [Pg.579]    [Pg.134]    [Pg.619]    [Pg.2371]    [Pg.2377]    [Pg.2382]    [Pg.338]    [Pg.13]    [Pg.296]    [Pg.320]    [Pg.357]    [Pg.383]    [Pg.436]    [Pg.439]    [Pg.439]    [Pg.459]    [Pg.468]    [Pg.468]    [Pg.492]    [Pg.499]    [Pg.629]    [Pg.707]    [Pg.62]    [Pg.183]    [Pg.70]    [Pg.76]    [Pg.51]    [Pg.211]    [Pg.640]    [Pg.660]    [Pg.662]    [Pg.944]    [Pg.208]    [Pg.419]   


SEARCH



Carlo simulation

Monte Carlo Simulation of Molecules

Monte Carlo simulation

Monte Carlo techniques, simulations small molecules

Monte simulations

© 2024 chempedia.info