Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Monomers tacticity

These differences do not arise from 1,2- or 3,4-polymerization of butadiene. Structures [XIII] and [XIV] can each exhibit the three different types of tacticity, so a total of six structures can result from this monomer when only one of the olefin groups is involved in the backbone formation. [Pg.28]

All polymer molecules have unique features of one sort or another at the level of individual repeat units. Occasional head-to-head or tail-to-tail orientations, random branching, and the distinctiveness of chain ends are all examples of such details. In this chapter we shall focus attention on two other situations which introduce variation in structure into polymers at the level of the repeat unit the presence of two different monomers or the regulation of configuration of successive repeat units. In the former case copolymers are produced, and in the latter polymers with differences in tacticity. Although the products are quite different materials, their microstructure can be discussed in very similar terms. Hence it is convenient to discuss the two topics in the same chapter. [Pg.423]

Tacticity of products. Most solid catalysts produce isotactic products. This is probably because of the highly orienting effect of the solid surface, as noted in item (1). The preferred isotactic configuration produced at these surfaces is largely governed by steric and electrostatic interactions between the monomer and the ligands of the transition metal. Syndiotacticity is mostly produced by soluble catalysts. Syndiotactic polymerizations are carried out at low temperatures, and even the catalyst must be prepared at low temperatures otherwise specificity is lost. With polar monomers syndiotacticity is also promoted by polar reaction media. Apparently the polar solvent molecules compete with monomer for coordination sites, and thus indicate more loosely coordinated reactive species. [Pg.490]

From appropriate ratios of these sequence lengths, what conclusions can be drawn concerning terminal versus penultimate control of addition The following are experimental tacticity fractions of polymers prepared from different monomers and with various catalysts. On the basis of Fig. 7.9, decide whether these preparations are adequately described (remember to make some allowance for experimental error) by a single parameter p or whether some other type of statistical description is required ... [Pg.501]

The classical representation of a homopolymer chain, in which the end groups are disregarded and only one monomer residue is considered, allows no possibility for structural variation. However, possibilities for stercoscqucnce isomerism arise as soon as the monomer residue is considered in relation to its neighbors and the substituents X and Y are different. The chains have tacticity (Section 4,2.1). Experimental methods for tacticity determination are summarized in 4.2.2 and the tacticity of some common polymers is considered in 4.2.3. [Pg.168]

Detailed discussion of polymer tacticity can be found in texts by Randall,2 Bovey,1-3 Koenig,4-5 Tonelli6 and Hatada.7 In order to understand stereoisomerism in polymer chains formed from mono- or 1,1-disubstiluted monomers, consider four idealized chain structures ... [Pg.168]

The application of NMR spectroscopy to tacticity determination of synthetic polymers was pioneered by Bovey and Tiers.9 NMR spectroscopy is the most used method and often the only technique available for directly assessing tacticity of polymer chains. "2 7 8 0JI The chemical shift of a given nucleus in or attached to the chain may be sensitive to the configuration of centers three or more monomer units removed. Other forms of spectroscopy (e.g. TR spectroscopy l2 lJ) are useful with some polymers and various physical properties (e.g. the Kerr effect14) may also be correlated with tacticity. [Pg.173]

The process is favored by low monomer concentrations as occurs at high conversions and in starved feed polymerizations.307 Theoretical calculations suggest that the incidence of backbiting should be strongly dependent on the tacticity of the penultimate dyad. 08 Double backbiting in VC or VAc polymerization will lead to 2-chloroethyl or 2-acetoxy ethyl branches respectively (as for E in Scheme 4.41 ).302... [Pg.211]

Copolymers involving only monosubslihited monomers are usually assumed lo have random tacticity (i.e. oAr = = 0.5). [Pg.357]

Another serious problem in applying these methods is that unambiguous assignments of N VIR signals to monomer sequences are, as yet, only available for a few systems. Moreover, assignments are complicated by the fact that the sensitivity of chemical shifts to tacticity may be equal or greater than their... [Pg.363]

The program will be demonstrated with poly(vinyl alcohol) for tacticity analysis and with copolymer vinylidene chloride isobutylene for monomer sequence analysis. Peak assignments in C-13 spectra were obtained independently by two-dimensional NMR techniques. In some cases, assignments have been extended to longer sequences and confirmed via simulation of the experimental data. Experimental and "best-fit" simulated spectra will be compared. [Pg.161]

The H-NMR spectrum of 2 in CDCI3 (Figure 1) exhibits broad unresolved resonances in the aromatic region similar to those found in the monomer. Broad signals with lack of resolution are consistent with magnetic non-equivalence of the methyl group protons resulting from a mixture of triad tacticities. [Pg.202]

The term tactidty refers to the configuration of polymer chains when their constituent monomer residues contain a steric center. Figure 1.8 illustrates the three principal classes of tacticity as exemplified by polypropylene. In isotactic polypropylene, the methyl groups are all positioned on the same side of the chain, as shown in Fig. 1.8 a). In syndiotactic polypropylene, the methyl groups alternate from one side to the other, as shown in Fig. 1.8 b). Random placement of the methyl groups results in atactic polypropylene, which is shown in Fig. 1.8 c). We can readily observe the effects of tacticity on the properties of polypropylene isotactic polypropylene is hard and stiff at room temperature, syndiotactic polypropylene is soft and flexible, and atactic polypropylene is soft and rubbery. [Pg.24]

Coordination polymerization Can engineer polymers with specific tacticities based on the catalyst system Can limit branching reactions Polymerization can occur at low pressures and modest temperatures Otherwise non-polymerizable monomers (e.g., propylene) can be polymerized Mainly applicable to olefinic monomers... [Pg.42]

We have designed PBUILD, a new CHEMLAB module, for easy construction of random copolymers. A library of monomers has been developed from which the chemists can select a particular sequence to generate a polymeric model. PBUILD takes care of all the atom numbering, three dimensional coordinates, and knows about stereochemistry (tacticity) as well as positional isomerism (head to tail versus head to head attachment). The result is a model of the selected polymer (or more likely a polymer fragment) in an all trans conformation, inserted into the CHEMLAB molecular workspace in literally a few minutes. [Pg.34]

During the propagation step, depending on the nature of the active ionic species, a limited control on the tacticity of the final polymer is possible. Ion pairs can, indeed, require the insertion of the monomer under a defined orientation, while free ions are unable to orient the insertion. [Pg.44]

The main characteristics of most of these heterogeneous catalysts is that, due to the size and shape of the complex, the insertion is only possible for one particular spatial orientation of the monomer, which, in the case of an asymmetric monomer like propylene, leads to a good control of tacticity. While use of Ti-based catalyst can lead to isotactic polypropylene, syndiotactic polypropylene is obtained using V-based catalysts. [Pg.46]


See other pages where Monomers tacticity is mentioned: [Pg.235]    [Pg.332]    [Pg.235]    [Pg.332]    [Pg.265]    [Pg.349]    [Pg.500]    [Pg.251]    [Pg.325]    [Pg.170]    [Pg.174]    [Pg.356]    [Pg.421]    [Pg.428]    [Pg.433]    [Pg.434]    [Pg.602]    [Pg.622]    [Pg.41]    [Pg.43]    [Pg.104]    [Pg.126]    [Pg.469]    [Pg.185]    [Pg.160]    [Pg.161]    [Pg.213]    [Pg.13]    [Pg.490]    [Pg.121]    [Pg.499]    [Pg.49]    [Pg.95]    [Pg.104]    [Pg.309]    [Pg.134]   
See also in sourсe #XX -- [ Pg.194 ]




SEARCH



Tactical

Tacticities

Tacticity

© 2024 chempedia.info