Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Liquid monolayer

Miyano K and Tamada K (1992) Capillary wave propagation on water covered with inhomogeneous monolayers liquid/gas coexistence films. Langmuir 8 160-163... [Pg.112]

A zero or near-zero contact angle is necessary otherwise results will be low. This was found to be the case with surfactant solutions where adsorption on the ring changed its wetting characteristics, and where liquid-liquid interfacial tensions were measured. In such cases a Teflon or polyethylene ring may be used [47]. When used to study monolayers, it may be necessary to know the increase in area at detachment, and some calculations of this are available [48]. Finally, an alternative method obtains y from the slope of the plot of W versus z, the elevation of the ring above the liquid surface [49]. [Pg.23]

The automated pendant drop technique has been used as a film balance to study the surface tension of insoluble monolayers [75] (see Chapter IV). A motor-driven syringe allows changes in drop volume to study surface tension as a function of surface areas as in conventional film balance measurements. This approach is useful for materials available in limited quantities and it can be extended to study monolayers at liquid-liquid interfaces [76],... [Pg.27]

It is not uncommon for this situation to apply, that is, for a Gibbs mono-layer to be in only slow equilibrium with bulk liquid—see, for example. Figs. 11-15 and 11-21. This situation also holds, of course, for spread monolayers of insoluble substances, discussed in Chapter IV. The experimental procedure is illustrated in Fig. Ill-19, which shows that a portion of the surface is bounded by bars or floats, an opposing pair of which can be moved in and out in an oscillatory manner. The concomitant change in surface tension is followed by means of a Wilhelmy slide. Thus for dilute aqueous solutions of a methylcellu-... [Pg.89]

The succeeding material is broadly organized according to the types of experimental quantities measured because much of the literature is so grouped. In the next chapter spread monolayers are discussed, and in later chapters the topics of adsorption from solution and of gas adsorption are considered. Irrespective of the experimental compartmentation, the conclusions as to the nature of mobile adsorbed films, that is, their structure and equations of state, will tend to be of a general validity. Thus, only a limited discussion of Gibbs monolayers has been given here, and none of such related aspects as the contact potentials of solutions or of adsorption at liquid-liquid interfaces, as it is more efficient to treat these topics later. [Pg.92]

There has been much activity in the study of monolayer phases via the new optical, microscopic, and diffraction techniques described in the previous section. These experimental methods have elucidated the unit cell structure, bond orientational order and tilt in monolayer phases. Many of the condensed phases have been classified as mesophases having long-range correlational order and short-range translational order. A useful analogy between monolayer mesophases and die smectic mesophases in bulk liquid crystals aids in their characterization (see [182]). [Pg.131]

The three general states of monolayers are illustrated in the pressure-area isotherm in Fig. IV-16. A low-pressure gas phase, G, condenses to a liquid phase termed the /i uid-expanded (LE or L ) phase by Adam [183] and Harkins [9]. One or more of several more dense, liquid-condensed phase (LC) exist at higher pressures and lower temperatures. A solid phase (S) exists at high pressures and densities. We briefly describe these phases and their characteristic features and transitions several useful articles provide a more detailed description [184-187]. [Pg.131]

McConnell et al. [196] and Andelman and co-workers have predicted [197,198] an ordered array of liquid domains in the gas-liquid coexistence regime caused by the dipole moment difference between the phases. These superstructures were observed in monolayers of dipalmitoyl phosphatidylcholine monolayers [170]. [Pg.132]

L. The liquid-expanded, L phase is a two-dimensionally isotropic arrangement of amphiphiles. This is in the smectic A class of liquidlike in-plane structure. There is a continuing debate on how best to formulate an equation of state of the liquid-expanded monolayer. Such monolayers are fluid and coherent, yet the average intermolecular distance is much greater than for bulk liquids. A typical bulk liquid is perhaps 10% less dense than its corresponding solid state. [Pg.133]

Photopolymerization reactions of monolayers have become of interest (note Chapter XV). Lando and co-workers have studied the UV polymerization of 16-heptadecenoic acid [311] and vinyl stearate [312] monolayers. Particularly interesting is the UV polymerization of long-chain diacetylenes. As illustrated in Fig. IV-30, a zipperlike process can occur if the molecular orientation in the film is just right (e.g., polymerization does not occur readily in the neat liquid) (see Refs. 313-315). [Pg.155]

G. L. Gaines, Jr., Insoluble Monolayers at Liquid-Gas Interfaces, Interscience, New York, 1966. [Pg.158]

Fig. X-12. Advancing and receding contact angles of various liquids [water (circles), Gly = glycerol (squares), Form = formamide (diamonds), EG = ethylene glycol (circles), BN = abromonapthalene (squares), BCH = bicyclohexyl (diamond), HD = hexadecane (circles)] on monolayers of HS(CH2)i60R having a range of R groups adsorbed on gold and silver (open and filled symbols respectively). (From Ref. 171.)... Fig. X-12. Advancing and receding contact angles of various liquids [water (circles), Gly = glycerol (squares), Form = formamide (diamonds), EG = ethylene glycol (circles), BN = abromonapthalene (squares), BCH = bicyclohexyl (diamond), HD = hexadecane (circles)] on monolayers of HS(CH2)i60R having a range of R groups adsorbed on gold and silver (open and filled symbols respectively). (From Ref. 171.)...
Many complex systems have been spread on liquid interfaces for a variety of reasons. We begin this chapter with a discussion of the behavior of synthetic polymers at the liquid-air interface. Most of these systems are linear macromolecules however, rigid-rod polymers and more complex structures are of interest for potential optoelectronic applications. Biological macromolecules are spread at the liquid-vapor interface to fabricate sensors and other biomedical devices. In addition, the study of proteins at the air-water interface yields important information on enzymatic recognition, and membrane protein behavior. We touch on other biological systems, namely, phospholipids and cholesterol monolayers. These systems are so widely and routinely studied these days that they were also mentioned in some detail in Chapter IV. The closely related matter of bilayers and vesicles is also briefly addressed. [Pg.537]

Films spread at liquid-liquid interfaces or on liquids other than water are discussed followed by the important effects of charged monolayers on water. Finally, the most technologically important application of Langmuir films, the Langmuir-Blodgett film deposited on a solid substrate, is reviewed. [Pg.537]

Other interesting Langmuir monolayer systems include spread thermotropic liquid crystals where a foam structure forms on expansion from a collapsed state [23]. Spread monolayers of clay dispersions form a layer of overlapping clay platelets that can be subsequently deposited onto solid substrates [24]. [Pg.542]

Proteins, like other macromolecules, can be made into monolayers at the air-water interface either by spreading, adsorption, or specific binding. Proteins, while complex polymers, are interesting because of their inherent surface activity and amphiphilicity. There is an increasing body of literature on proteins at liquid interfaces, and here we only briefly discuss a few highlights. [Pg.542]

Because of the charged nature of many Langmuir films, fairly marked effects of changing the pH of the substrate phase are often observed. An obvious case is that of the fatty-acid monolayers these will be ionized on alkaline substrates, and as a result of the repulsion between the charged polar groups, the film reverts to a gaseous or liquid expanded state at a much lower temperature than does the acid form [121]. Also, the surface potential drops since, as illustrated in Fig. XV-13, the presence of nearby counterions introduces a dipole opposite in orientation to that previously present. A similar situation is found with long-chain amines on acid substrates [122]. [Pg.557]


See other pages where Liquid monolayer is mentioned: [Pg.416]    [Pg.352]    [Pg.6515]    [Pg.416]    [Pg.352]    [Pg.6515]    [Pg.412]    [Pg.3]    [Pg.45]    [Pg.79]    [Pg.91]    [Pg.101]    [Pg.104]    [Pg.107]    [Pg.111]    [Pg.134]    [Pg.136]    [Pg.297]    [Pg.297]    [Pg.406]    [Pg.466]    [Pg.552]    [Pg.558]    [Pg.589]    [Pg.615]   
See also in sourсe #XX -- [ Pg.268 ]




SEARCH



Air/liquid interface phospholipid monolayers

Charged Lipid Monolayers on Liquid Surfaces

Liquid-condensed phase monolayer

Liquid-expanded Monolayers)

Monolayer films liquid monolayers

Monolayer liquid-condensed

Monolayer liquid-expanded

Monolayers between two immiscible liquids for three-component solutions

Monolayers liquid droplets

Monolayers liquid-condensed phase

Monolayers liquid-expanded phase

Reaction in Monolayers at Liquid Surfaces

Rod-Like Liquid Crystals Combining RH- and RF-Chains Monolayer Smectic Phases

© 2024 chempedia.info