Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Monolayer ellipsometry

The detailed examination of the behavior of light passing through or reflected by an interface can, in principle, allow the determination of the monolayer thickness, its index of refiraction and absorption coefficient as a function of wavelength. The subjects of ellipsometry, spectroscopy, and x-ray reflection deal with this goal we sketch these techniques here. [Pg.126]

In the case of Langmuir monolayers, film thickness and index of refraction have not been given much attention. While several groups have measured A versus a, [143-145], calculations by Knoll and co-workers [146] call into question the ability of ellipsometry to unambiguously determine thickness and refractive index of a Langmuir monolayer. A small error in the chosen index of refraction produces a large error in thickness. A new microscopic imaging technique described in section IV-3E uses ellipsometric contrast but does not require absolute determination of thickness and refractive index. Ellipsometry is routinely used to successfully characterize thin films on solid supports as described in Sections X-7, XI-2, and XV-7. [Pg.126]

Monolayers of alkanetliiols adsorbed on gold, prepared by immersing tire substrate into solution, have been characterized by a large number of different surface analytical teclmiques. The lateral order in such layers has been investigated using electron [1431, helium [144, 1451 and x-ray [146, 1471 diffraction, as well as witli scanning probe microscopies [122, 1481. Infonnation about tire orientation of tire alkyl chains has been obtained by ellipsometry [149], infrared (IR) spectroscopy [150, 151] and NEXAFS [152]. [Pg.2624]

Porter M D, Bright T B, Allara D L and Chidsey C E D 1987 Spontaneously organized molecular assemblies. 4. Structural characterization of normal-alkyl thiol monolayers on gold by optical ellipsometry, infrared-spectroscopy, and electrochemistry J. Am. Chem. Soc. 109 3559-68... [Pg.2636]

Ellipsometry can be sensitive to layers of matter only one atom thick. For example, oxidation of freshly cleaved single-crystal graphite can be monitored from the first monolayer and up. The best thicknesses for the ellipsometric study of thin films are between about 1 nm and 1000 nm. Although the spectra become complicated, films thicker than even 1 pm can be studied. Flat planar materials are optimum, but surface and interfacial roughness can be quantitatively determined if the roughness scale is smaller than about 100 nm. Thus ellipsometry is ideal for the investigation of interfacial surfaces in optical coatings and semiconductor struc-... [Pg.402]

Ellipsometry is used to study film growth on electrode surfaces. It is possible to study films at the partial monolayer level and all the way up to coverage of thicknesses of thousands of angstroms while doing electrochemical measnrements. To get nseful data it is important to determine A and j/ for the bare electrode snrface and the surface with a film. These data are processed to derive the film thickness, d, and the refractive index, h, which consists of a real (n) and imaginary part (k), h = n- ik. So ellipsometry gives information on the thickness and refractive index of snrface hlms. [Pg.496]

Pleith, W., W. Kozlowski, and T. Twomey, Reflectance spectroscopy and ellipsometry of organic monolayers, in Adsorption of Molecules at Metal Electrodes, 3. Lipkowski and P. N. Ross, Eds., VCH, New York, 1992, p. 285. [Pg.520]

Until quite recently the very initial stages of metal deposition were difficult to characterize in detail by structure- and morphology-sensitive techniques. As a consequence and for practical purposes - multilayers were more useful for applications than monolayers - the main interest was focussed onto thick deposits. Optical and electron microscopy, ellipsometry and specular or diffuse reflectance spectroscopy were the classic tools, by which the emerging shape of the deposit was monitored [4-7],... [Pg.108]

Optical Exposure. Multicomponent LB films were prepared from solutions of novolac/PAC varying in concentration from 5-50 wt% PAC, and transferred at 2.5 -10 dyn/cm. The films were composed of 15 - 20 monolayers, with an average film thickness of 30 nm, as measured by ellipsometry. Exposures were performed with a Canon FP-141 4 1 stepper (primarily g-line exposure) at an exposure setting of 5.2 and with a fine line test reticle that contains line/space patterns from 20 to 1 pm (40 to 2 pm pitch). They then were then developed in 0.1 - 0.2 M KOH, depending on the PAC content The wafers received a 20 min 120°C post development bake to improve adhesion to the Cr. Finally, the Cr was etched in Cyantek CR-14 chromium etchant, and the resist and Cr images were examined by SEM. [Pg.352]

ELLIPSOMETRY The structure of liquid surfaces with monomolecular films can be studied by measuring the light reflected from the surface. The range of thickness that one generally considers to be measured varies from 100 to 1000 A (10-100 nm). However, in monolayers in which the molecules are oriented and the thickness involved is 5-50 A, the methods have been not easily pursued. In a differential method in which two beams of light from the same incandescent lamp were directed... [Pg.79]

Organized multilayers of ferrocene alkyl thiol have been self-assembled on Au(lll) under conditions of controlled thiol concentration. Several methods, such as CV, ellipsometry, STM, AFM, and in situ FTIR spectroscopy have been applied in these studies in order to find out the differences between mono- and multilayers of the same compound [152]. Similar compounds, namely, short-chain alkyl thiols (n = 3-10) with ferrocene terminal group were allowed to form organized monolayers at Au(lll) surfaces [153]. [Pg.860]

Another real-time study of the reaction of M-FA films with H2S utilized ellip-sometry to monitor changes in film thickness concurrent with metal sulfide formation (53). The reactions appeared to reach equilibrium within the same period of time (within 2 h), with a change per monolayer of 0.2 nm for CdBe and 0.9 nm for both CuBe and ZnBe. Their ellipsometry results, in agreement with Peng et al. (66), also show a dependence of the reaction rate on the H2S pressure and the surface pressure at which the films were deposited. [Pg.263]

He goes on to determine relations for a2/ai at steady state (assuming monolayer coverage) and for n, + n2, given experimentally by radioisotope or ellipsometry studies. [Pg.27]

In 1985 Allara and Nuzzo [354, 355] published the results of an extensive investigation in which adsorption took place on to an aluminium oxide layer formed on a film of aluminium deposited in vacuo on to a silicon wafer. Various carboxylic acids were dissolved in high purity hexadecane and allowed to adsorb from this solution on to the prepared aluminium oxide surface. The monolayers so formed were examined by ellipsometry and infrared spectroscopy. Contact angle measurements were made on the monolayer surfaces and radioactive labelled (tritiated) compounds were employed to study the interchange of adsorbed molecules with those in solution. Various other techniques of less immediate relevance to our present interests were also employed and reference to these two papers should be made for further particulars. Aluminium... [Pg.117]

It was found that, for carboxylic acids containing 12 or more carbon atoms, ellipsometry data indicated a him thickness which would be expected from nearly vertical orientation of the hydrocarbon chains and relatively tight packing. For shorter chain lengths it was not possible to form stable monolayers. It was shown that the kinetic processes involved in layer formation can take up to several days. Infrared studies lead to three important conclusions. [Pg.118]


See other pages where Monolayer ellipsometry is mentioned: [Pg.2625]    [Pg.2625]    [Pg.2625]    [Pg.2625]    [Pg.541]    [Pg.1264]    [Pg.2635]    [Pg.409]    [Pg.555]    [Pg.428]    [Pg.376]    [Pg.103]    [Pg.105]    [Pg.106]    [Pg.265]    [Pg.329]    [Pg.69]    [Pg.230]    [Pg.252]    [Pg.261]    [Pg.121]    [Pg.245]    [Pg.300]    [Pg.5]    [Pg.73]    [Pg.531]    [Pg.131]    [Pg.259]    [Pg.40]    [Pg.40]    [Pg.340]    [Pg.537]    [Pg.537]    [Pg.543]    [Pg.122]   
See also in sourсe #XX -- [ Pg.547 ]




SEARCH



Ellipsometry

© 2024 chempedia.info