Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Molybdenum 3, catalytic formation

The catalytic formation of benzene from methane was observed on nanostructured molybdenum-containing films in microreactors. The results confirm that M02C/M0O3 is an active catalyst for methane conversion. [Pg.103]

In 2002, Lo et al. found the catalytic formation of substimted furans 48 from the corresponding epoxyalkynes 47 via ruthenium-vinylidene complexes as key reactive intermediates (Scheme 21.21) [30]. This transformation is considered to be the ruthenium version of molybdenum-catalyzed reaction of Scheme 21.4. Varela-Fernandez et al. reported the ruthenium-catalyzed cycloaromatization of terminal alkynes bearing either a hydroxy or an amino group (49 and 51) into the corresponding benzofurans and indoles (50 and 52) (Scheme 21.22) [31]. At the same time, Nair et al. reported the same cycloaromatization by using a bifunctional ruthenium complex as a catalyst [32]. In both cases, ruthenium-vinylidene complexes were supposed to work as key reactive intermediates. [Pg.558]

The alkylation of allylic sulfides with stable anions takes place by using stoichiometric amounts of molybdenum hexacarbonyl86. Contrary to the catalytic reaction, the C —C bond formation occurs at the less hindered site of allyl groups in the stoichiometric reaction. [Pg.878]

Olefin-metathesis is a useful tool for the formation of unsaturated C-C bonds in organic synthesis.186 The most widely used catalysts for olefin metathesis include alkoxyl imido molybdenum complex (Schrock catalyst)187 and benzylidene ruthenium complex (Grubbs catalyst).188 The former is air- and moisture-sensitive and has some other drawbacks such as intolerance to many functional groups and impurities the latter has increased tolerance to water and many reactions have been used in aqueous solution without any loss of catalytic efficiency. [Pg.79]

The reaction of olefin epoxidation by peracids was discovered by Prilezhaev [235]. The first observation concerning catalytic olefin epoxidation was made in 1950 by Hawkins [236]. He discovered oxide formation from cyclohexene and 1-octane during the decomposition of cumyl hydroperoxide in the medium of these hydrocarbons in the presence of vanadium pentaoxide. From 1963 to 1965, the Halcon Co. developed and patented the process of preparation of propylene oxide and styrene from propylene and ethylbenzene in which the key stage is the catalytic epoxidation of propylene by ethylbenzene hydroperoxide [237,238]. In 1965, Indictor and Brill [239] published studies on the epoxidation of several olefins by 1,1-dimethylethyl hydroperoxide catalyzed by acetylacetonates of several metals. They observed the high yield of oxide (close to 100% with respect to hydroperoxide) for catalysis by molybdenum, vanadium, and chromium acetylacetonates. The low yield of oxide (15-28%) was observed in the case of catalysis by manganese, cobalt, iron, and copper acetylacetonates. The further studies showed that molybdenum, vanadium, and... [Pg.415]

Oxidative Dehydrogenation of Ethane. The dehydrogenation of alkanes also occurs, but in a catalytic manner, over molybdenum supported on silica (22,23). In addition to the stoichiometric reactions, the role of the 0 ion in this catalytic reaction is further suggested by the observation that N2O is an effective oxidant at temperatures as low as 280°C, but no reaction is observed at these temperatures with O2 as the oxidant (22). It should be noted that at moderate temperatues N2O gives rise to 0 , whereas O2 yields O2 over Mo/Si02. Under steady-state conditions the rates of formation of C2Hi were in the ratio of 7 1 at 375°C and 3.7 1 at 450°C when N2O and O2 were used as the oxidants, respectively (23). ... [Pg.140]

When sodium ethoxide is used in place of sodium hydroxide in the carbonylation reaction of benzyl halides with dicobalt octacarbonyl, ethyl esters are produced instead of the acids [15], Esters are also produced directly from iodoalkanes through their reaction with molybdenum hexacarbonyl in the presence of tetra-/i-butylammo-nium fluoride [16]. Di-iodoalkanes produce lactones [16]. The reaction can be made catalytic in the hexacarbonyl by the addition of methyl formate [16]. t-Butyl arylacetic esters are produced in moderate yield (40-60%) under phase-transfer catalytic conditions in the palladium promoted carbonylation reaction with benzyl chlorides [17]. [Pg.372]

Ruthenium complexes B also undergo fast reaction with terminal alkenes, but only slow or no reaction with internal alkenes. Sterically demanding olefins such as, e.g., 3,3-dimethyl-l-butene, or conjugated or cumulated dienes cannot be metathesized with complexes B. These catalysts generally have a higher tendency to form cyclic oligomers from dienes than do molybdenum-based catalysts. With enol ethers and enamines irreversible formation of catalytically inactive complexes occurs [582] (see Section 2.1.9). Isomerization of allyl ethers to enol ethers has been observed with complexes B [582]. [Pg.144]

The reasoning which led the author to make this first shot in the dark regarding the usefulness of combinations of solid compounds as ammonia catalysts was as follows If we assume that a labile iron nitride is an interminate in the catalytic ammonia synthesis, every addition to the iron which favors the formation of the iron nitride ought to be of advantage. In other words, the hypothesis was used that surface catalysis acts via the formation of intermediate compounds between the catalyst and one or more of the reactants. An experimental support for this theory was the fact that a stepwise synthesis via the formation and successive hydrogen reduction of nitrides had been carried out with calcium nitrides (Haber), and cerium nitrides (Lipski). Later, the author found molybdenum nitride as being the best intermediate for such a stepwise synthesis. [Pg.87]

In addition to the successful reductive carbonylation systems utilizing the rhodium or palladium catalysts described above, a nonnoble metal system has been developed (27). When methyl acetate or dimethyl ether was treated with carbon monoxide and hydrogen in the presence of an iodide compound, a trivalent phosphorous or nitrogen promoter, and a nickel-molybdenum or nickel-tungsten catalyst, EDA was formed. The catalytst is generated in the reaction mixture by addition of appropriate metallic complexes, such as 5 1 combination of bis(triphenylphosphine)-nickel dicarbonyl to molybdenum carbonyl. These same catalyst systems have proven effective as a rhodium replacement in methyl acetate carbonylations (28). Though the rates of EDA formation are slower than with the noble metals, the major advantage is the relative inexpense of catalytic materials. Chemistry virtually identical to noble-metal catalysis probably occurs since reaction profiles are very similar by products include acetic anhydride, acetaldehyde, and methane, with ethanol in trace quantities. [Pg.147]


See other pages where Molybdenum 3, catalytic formation is mentioned: [Pg.659]    [Pg.459]    [Pg.659]    [Pg.6804]    [Pg.252]    [Pg.241]    [Pg.368]    [Pg.79]    [Pg.274]    [Pg.188]    [Pg.357]    [Pg.118]    [Pg.169]    [Pg.52]    [Pg.369]    [Pg.696]    [Pg.179]    [Pg.116]    [Pg.177]    [Pg.57]    [Pg.2]    [Pg.142]    [Pg.165]    [Pg.190]    [Pg.358]    [Pg.346]    [Pg.355]    [Pg.238]    [Pg.533]    [Pg.299]    [Pg.254]    [Pg.57]    [Pg.211]    [Pg.215]    [Pg.216]    [Pg.220]    [Pg.253]    [Pg.163]    [Pg.185]    [Pg.476]   


SEARCH



Molybdenum formation

© 2024 chempedia.info