Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Passive diffusion, molecules

Passive diffusion is the simplest transport process. In passive diffusion, the transported species moves across the membrane in the thermodynamically favored direction without the help of any specific transport system/molecule. For an uncharged molecule, passive diffusion is an entropic process, in which movement of molecules across the membrane proceeds until the concentration of the substance on both sides of the membrane is the same. For an uncharged molecule, the free energy difference between side 1 and side 2 of a membrane (Figure 10.1) is given by... [Pg.297]

Porin channels are impHcated in the transport of cephalosporins because ceds deficient in porins are much more impermeable than are ceds that are rich in porins. The porins appear to function as a molecular sieve, adowing molecules of relatively low molecular weight to gain access to the periplasmic space by passive diffusion. In enterobacteria, a clear correlation exists between porin quantity and cephalosporin resistance, suggesting that the outer membrane is the sole barrier to permeabdity. However, such a relationship is not clearly defined for Pseudomonas aeruginosa where additional barriers may be involved (139,144,146). [Pg.30]

It is possible that the stationary-state situations leading to an active ion transport occur only in localized regions of the membrane, i.e., at ATPase molecule units with diameters of about 50 A and a length of 80 A. The vectorial ion currents at locations with a mixed potential and special equipotential lines would appear phenomenologically like ionic channels. If the membrane area where the passive diffusion occurs is large, it may determine the rest potential of the whole cell. [Pg.239]

As described above, some solutes such as gases can enter the cell by diffusing down an electrochemical gradient across the membrane and do not require metabolic energy. The simple passive diffusion of a solute across the membrane is limited by the thermal agitation of that specific molecule, by the concentration gradient across the membrane, and by the solubility of that solute (the permeability coefficient. Figure 41—6) in the hydrophobic core of the membrane bilayer. Solubility is... [Pg.423]

Two principal routes of passive diffusion are recognized transcellular (la —> lb —> lc in Fig. 2.7) and paracellular (2a > 2b > 2c). Lateral exchange of phospholipid components of the inner leaflet of the epithelial bilayer seems possible, mixing simple lipids between the apical and basolateral side. However, whether the membrane lipids in the outer leaflet can diffuse across the tight junction is a point of controversy, and there may be some evidence in favor of it (for some lipids) [63]. In this book, a third passive mechanism, based on lateral diffusion of drug molecules in the outer leaflet of the bilayer (3a > 3b > 3c), wih be hypothesized as a possible mode of transport for polar or charged amphiphilic molecules. [Pg.17]

In the transport across a phospholipid bilayer by passive diffusion, the permeability of the neutral form of a molecule is 10X times greater than that of the charged form. For the epithelium, the discrimination factor is 105. The basement membrane (Fig. 2.5) allows passage of uncharged molecules more readily than charged species by a factor of 10 [76]. [Pg.17]

Methods for quantifying both the transcellular diffusion and concurrent metabolism of drugs and the unusual transcellular diffusion of membrane-interactive molecules coupled with the influence of protein binding are described in detail. To demonstrate the utility of cultured cell monolayers as a tool for basic science investigations, a subsection is devoted to the elucidation of rate-determining steps and factors in the passive diffusion of peptides across biological membranes. The chapter concludes with a discussion on the judicious use of in vitro cell monolayer results to predict in vivo results. [Pg.236]

Figure 1 General pathways through which molecules can actively or passively cross a monolayer of cells. (A) Endocytosis of solutes and fusion of the membrane vesicle with the opposite plasma membrane in an active process called transcytosis. (B) Similar to A, but the solute associates with the membrane via specific (e.g., receptor) or nonspecific (e.g., charge) interactions. (C) Passive diffusion between the cells through the paracellular space. (C, C") Passive diffusion (C ) through the cell membranes and cytoplasm or (C") via partitioning into and lateral diffusion within the cell membrane. (D) Active or carrier-mediated transport of an otherwise poorly membrane permeable solute into and/or out of a cellular barrier. Figure 1 General pathways through which molecules can actively or passively cross a monolayer of cells. (A) Endocytosis of solutes and fusion of the membrane vesicle with the opposite plasma membrane in an active process called transcytosis. (B) Similar to A, but the solute associates with the membrane via specific (e.g., receptor) or nonspecific (e.g., charge) interactions. (C) Passive diffusion between the cells through the paracellular space. (C, C") Passive diffusion (C ) through the cell membranes and cytoplasm or (C") via partitioning into and lateral diffusion within the cell membrane. (D) Active or carrier-mediated transport of an otherwise poorly membrane permeable solute into and/or out of a cellular barrier.
Raub TJ, CL Barsuhn, LR Williams, DE Decker, GA Sawada, NFH Ho. (1993). Use of a biophysical-kinetic model to understand the roles of protein binding and membrane partitioning on passive diffusion of highly lipophilic molecules across cellular barriers. J Drug Targeting 1 269-286. [Pg.332]

Formation of Na+, K+-ATPase carrier molecules in the basolateral membrane of the tubular epithelial cells (promotes extrusion of Na+ ions from the cells and their movement into plasma by way of peritubular capillaries enhances the concentration gradient for passive diffusion through Na+ channels in the luminal membrane)... [Pg.320]

Monnard and Deamer (2001) carried out further studies, using DMPC liposomes, to determine their properties under conditions of passive diffusion of dissolved molecules. The passage across the lipid bilayer is a precondition for the intake of nutrient substances via the vesicle envelope. The experiments showed that even polar molecules can enter the interior of the liposomes oligonucleotides, however, cannot cross the lipid bilayer of DMPC vesicles. [Pg.270]

Molecules with a large molecular weight or size are confined to the transcellular route and its requirements related to the hydrophobicity of the molecule. The transcellular pathway has been evaluated for many years and is thought to be the main route of absorption of many drugs, both with respect to carrier-mediated transport and passive diffusion. The most well-known requirement for the passive part of this route is hydrophobicity, and a relationship between permeability coefficients across cell monolayers such as the Caco-2 versus log P and log D 7.4 or 6.5 have been established [102, 117]. However, this relationship appears to be nonlinear and reaches a plateau at around log P of 2, while higher lipophilicities result in reduced permeability [102, 117, 118]. Because of this, much more attention has recently been paid towards molecular descriptors other than lipophilicity [86, 119-125] (see section 5.5.6.). The relative contribution between the para-cellular and transcellular components has also been evaluated using Caco-2 cells, and for a variety of compounds with different charges [110, 112] and sizes [112] (see Section 5.4.5). [Pg.113]

HU, a freely water-soluble molecule, crosses the intestinal wall and other cells by passive diffusion [5, 6], and tissue concentration of HU rapidly matches its blood concentration [7]. The oral bioavailability of HU is nearly complete and hence therapeutically simple to administrate. HU undergoes biotransformation and is converted into urea by a yet-to-be identified hepatic P450 monooxygenase (CYP) enzyme [8, 9], Elimination of HU and its metabolites involves both renal and non-renal mechanisms. [Pg.235]

Again, care has to be taken for the non-ideal (or real) behavior of the measurement system. Applications are limited by non-specific absorption of molecules on the surface, mass transfer effects (under conditions of laminar flow a 1-5-pm layer between sensor surface and volume flow is not whirled and has to be passed by passive diffusion) or limited access for the immobilized molecules [158-160]. [Pg.88]

Computational models for blood-brain-barrier penetration have been well reviewed in detail by Clark [36]. Penetration of the blood-brain-barrier (BBB) via passive diffusion is dependent upon the hydrophilicity and lipophilicity of a molecule. However, the BBB is a thicker, more lipophilic membrane than the intestinal membrane. Kelder et al. [37] showed that very few of 776 orally administered CNS drugs had PSA >90, while a substantial fraction of 1590 orally administered non-CNS had PSA >90. These results demonstrate the poor BBB penetration by hydrophilic molecules. [Pg.457]

Accumulation/efflux studies can be performed on different cell systems or membrane vesicle preparations. In the accumulation assays, uptake of a probe over time, typically either fluorescent (e.g. calcein-AM (CAM) [25-27]) or radiolabeled, into the cell or membrane vesicles is measured in the presence or absence of a known P-gp inhibitor. As P-gp transports substrates out of the cells, the inhibition of the protein would result in an increase in the amount of the probe in the cell. Accumulation studies in cells that overexpress P-gp can be compared to those obtained in the parental cell line that does not have as high a level of P-gp expression. The probe in the absence of inhibitors shows lower accumulation in P-gp expressing cells than in P-gp deficient cells. Similarly, probe accumulation is increased under conditions where P-gp is inhibited such that the difference in accumulation in P-gp deficient and overexpressing cells, respectively, becomes smaller. Accumulation assays poorly distinguish substrates and inhibitors of P-gp and, as far as transport assays are concerned, are also influenced by a passive diffusion property of molecules [20]. In contrast to transport assays, both accumulation (i.e. calcein-AM assay) and ATPase assays tend to fail in the identification ofrelatively low permeable compounds as P-gp active compounds [20]. [Pg.370]


See other pages where Passive diffusion, molecules is mentioned: [Pg.238]    [Pg.238]    [Pg.229]    [Pg.248]    [Pg.298]    [Pg.105]    [Pg.52]    [Pg.24]    [Pg.267]    [Pg.38]    [Pg.805]    [Pg.422]    [Pg.445]    [Pg.3]    [Pg.7]    [Pg.116]    [Pg.129]    [Pg.129]    [Pg.302]    [Pg.318]    [Pg.11]    [Pg.22]    [Pg.48]    [Pg.49]    [Pg.246]    [Pg.360]    [Pg.498]    [Pg.39]    [Pg.58]    [Pg.280]    [Pg.455]    [Pg.562]    [Pg.31]    [Pg.367]    [Pg.37]   
See also in sourсe #XX -- [ Pg.87 ]




SEARCH



Diffusing molecule

© 2024 chempedia.info