Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Molecules electronic structure, application

For bulk structural detemiination (see chapter B 1.9). the main teclmique used has been x-ray diffraction (XRD). Several other teclmiques are also available for more specialized applications, including electron diffraction (ED) for thin film structures and gas-phase molecules neutron diffraction (ND) and nuclear magnetic resonance (NMR) for magnetic studies (see chapter B1.12 and chapter B1.13) x-ray absorption fine structure (XAFS) for local structures in small or unstable samples and other spectroscopies to examine local structures in molecules. Electron microscopy also plays an important role, primarily tlirough unaging (see chapter B1.17). [Pg.1751]

This Introductory Section was intended to provide the reader with an overview of the structure of quantum mechanics and to illustrate its application to several exactly solvable model problems. The model problems analyzed play especially important roles in chemistry because they form the basis upon which more sophisticated descriptions of the electronic structure and rotational-vibrational motions of molecules are built. The variational method and perturbation theory constitute the tools needed to make use of solutions of... [Pg.73]

The premise behind DFT is that the energy of a molecule can be determined from the electron density instead of a wave function. This theory originated with a theorem by Hoenburg and Kohn that stated this was possible. The original theorem applied only to finding the ground-state electronic energy of a molecule. A practical application of this theory was developed by Kohn and Sham who formulated a method similar in structure to the Hartree-Fock method. [Pg.42]

G. Doggett, The Electronic Structure of Models Theory and Applications to Inorganic Molecule.s Pergamon, Oxford (1972). [Pg.292]

The response of liquid crystal molecular orientation to an electric field is another major characteristic utilised for many years in industrial applications [44] and more recently in studies of electrically-induced phase transitions [45]. The ability of the director to align along an external field again results from the electronic structure of the individual molecules. [Pg.13]

It is clear from the forgoing discussions that the important material properties of liquid crystals are closely related to the details of the structure and bonding of the individual molecules. However, emphasis in computer simulations has focused on refining and implementing intermolecular interactions for condensed phase simulations. It is clear that further work aimed at better understanding of molecular electronic structure of liquid crystal molecules will be a major step forward in the design and application of new materials. In the following section we outline a number of techniques for predictive calculation of molecular properties. [Pg.15]

In the case of being successful in calculating multiple conformations by using time- or ensemble-averaged MD restraints the solved molecular structures are presented as 3D models and can be deposited in an electronic structure database (17). Finally, it is recommended to provide an accurate explanation of the procedures used for the structure elucidation because the application of different methods (NMR, DG, MD, SA, Monte-Carlo calculations. X-ray crystallography) may result in varying conformational models which do not implicitly display the real state of a molecule. This aspect should be always kept in mind when dealing with structure determination methods. [Pg.246]

Vibrational spectroscopy is of utmost importance in many areas of chemical research and the application of electronic structure methods for the calculation of harmonic frequencies has been of great value for the interpretation of complex experimental spectra. Numerous unusual molecules have been identified by comparison of computed and observed frequencies. Another standard use of harmonic frequencies in first principles computations is the derivation of thermochemical and kinetic data by statistical thermodynamics for which the frequencies are an important ingredient (see, e. g., Hehre et al. 1986). The theoretical evaluation of harmonic vibrational frequencies is efficiently done in modem programs by evaluation of analytic second derivatives of the total energy with respect to cartesian coordinates (see, e. g., Johnson and Frisch, 1994, for the corresponding DFT implementation and Stratman etal., 1997, for further developments). Alternatively, if the second derivatives are not available analytically, they are obtained by numerical differentiation of analytic first derivatives (i. e., by evaluating gradient differences obtained after finite displacements of atomic coordinates). In the past two decades, most of these calculations have been carried... [Pg.146]

Bauschlicher, C. W., Jr., 1995b, The Application of Ab Initio Electronic Structure Calculations to Molecules Containing Transition Metal Atoms in Modem Electronic Structure Theory, Part II, Yarkony, D. R. (ed.), World Scientific, Singapore. [Pg.280]

Similarly, improvement in the accuracy of the nuclear dynamics would be fruitful. While in this review we have shown that, in the absence of any approximations beyond the use of a finite basis set, the multiple spawning treatment of the nuclear dynamics can border on numerically exact for model systems with up to 24 degrees of freedom, we certainly do not claim this for the ab initio applications presented here. In principle, we can carry out sequences of calculations with larger and larger nuclear basis sets in order to demonstrate that experimentally observable quantities have converged. In the context of AIMS, the cost of the electronic structure calculations precludes systematic studies of this convergence behavior for molecules with more than a few atoms. A similar situation obtains in time-independent quantum chemistry—the only reliable way to determine the accuracy of a particular calculation is to perform a sequence of... [Pg.504]

Of course, in reality new chemical substances are not synthesized at random with no purpose in mind—the numbers that have still not been created are too staggering for a random approach. By one estimate,1 as many as 10200 molecules could exist that have the general size and chemical character of typical medicines. Instead, chemists create new substances with the aim that their properties will be scientifically important or useful for practical purposes. As part of basic science, chemists have created new substances to test theories. For example, the molecule benzene has the special property of aromaticity, which in this context refers to special stability related to the electronic structure of a molecule. Significant effort has gone into creating new nonbenzenoid aromatic compounds to test the generality of theories about aromaticity. These experiments helped stimulate the application of quantum mechanical theory to the prediction of molecular energies. [Pg.23]

The N02 molecule illustrates the application of rule 3. Because the N02 molecule has a total of 17 valence shell electrons, there are eight pairs of electrons and one unpaired electron. Structures drawn for N02 must reflect this. Therefore, we draw the structure for N02 as... [Pg.107]


See other pages where Molecules electronic structure, application is mentioned: [Pg.137]    [Pg.129]    [Pg.322]    [Pg.74]    [Pg.405]    [Pg.65]    [Pg.112]    [Pg.132]    [Pg.208]    [Pg.315]    [Pg.657]    [Pg.13]    [Pg.16]    [Pg.83]    [Pg.4]    [Pg.124]    [Pg.143]    [Pg.179]    [Pg.212]    [Pg.44]    [Pg.160]    [Pg.209]    [Pg.40]    [Pg.688]    [Pg.11]    [Pg.88]    [Pg.96]    [Pg.126]    [Pg.229]    [Pg.262]    [Pg.357]    [Pg.477]    [Pg.426]    [Pg.468]    [Pg.456]    [Pg.37]   


SEARCH



Applications molecules

Applications structure

Electron applications

Electronic structure applications

Electronics applications

Molecule electronic

Molecules structures

Molecules, electronic structures

Structural molecules

© 2024 chempedia.info