Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Molecular structure, role materials

Linear polymers are the most commonly found, and consist of chains of D units endblocked by a variety of functionalized M units. Branched-chain silicones consist mainly of D units, with a D unit being replaced by a T or a Q unit at each point of branching. Cyclic PDMS oligomers are also common and can play a role in adhesion. They are usually found as mixtures of structures going from three siloxy units, to four, five, and higher siloxy units. A whole range of analytical techniques can determine the detailed molecular structures of these materials [20,21],... [Pg.680]

The first topic has an important role in the interpretation and calculation of atomic and molecular structures and properties. It is needless to stress the importance of electronic correlation effects, a central topic of research in quantum chemistry. The relativistic formulations are of great importance not only from a formal viewpoint, but also for the increasing number of studies on atoms with high Z values in molecules and materials. Valence theory deserves special attention since it improves the electronic description of molecular systems and reactions with the point of view used by most laboratory chemists. Nuclear motion constitutes a broad research field of great importance to account for the internal molecular dynamics and spectroscopic properties. [Pg.434]

Every example of a vibration we have introduced so far has dealt with a localized set of atoms, either as a gas-phase molecule or a molecule adsorbed on a surface. Hopefully, you have come to appreciate from the earlier chapters that one of the strengths of plane-wave DFT calculations is that they apply in a natural way to spatially extended materials such as bulk solids. The vibrational states that characterize bulk materials are called phonons. Like the normal modes of localized systems, phonons can be thought of as special solutions to the classical description of a vibrating set of atoms that can be used in linear combinations with other phonons to describe the vibrations resulting from any possible initial state of the atoms. Unlike normal modes in molecules, phonons are spatially delocalized and involve simultaneous vibrations in an infinite collection of atoms with well-defined spatial periodicity. While a molecule s normal modes are defined by a discrete set of vibrations, the phonons of a material are defined by a continuous spectrum of phonons with a continuous range of frequencies. A central quantity of interest when describing phonons is the number of phonons with a specified vibrational frequency, that is, the vibrational density of states. Just as molecular vibrations play a central role in describing molecular structure and properties, the phonon density of states is central to many physical properties of solids. This topic is covered in essentially all textbooks on solid-state physics—some of which are listed at the end of the chapter. [Pg.127]

A good design should match a market opportunity with one or more potential technological solutions that can be investigated and explored. Eor instance, in the case of a clear Tupperware box, what plastic materials are currently in use, and what other plastic materials available are transparent. What are the reasons that some plastics are transparent and some are opaque, and what is the role of the molecular structure and what is the role of blending and additives Can we modify the current material to make it transparent, and yet retain the other desired properties (what are they) Can we find a different material that would do a better job ... [Pg.337]

The utility of the simple fluid theory lies in the plausibility and generality erf its assumptions about how materials behave and in the exactness with which its conclusions are worked out. In particular, one is inclined to believe, as a working hypothesis and in the absence of contradictory evidence, that the theory is general enough to encompass the behavior of homogeneous polymeric liquids. On this basis the role of molecular theories is a complementary one, to provide forms for the material functions and to account for their systematic change with molecular structure and temperature. [Pg.20]

These polymers are distinguished from cellulose by the presence of both/ -(l— 3)- and / -(l— 4)-linked D-glucosyl residues, lower molecular weights (some noncellulosic glucans are water-soluble), and susceptibility to hydrolysis by / -D-glucanases that cannot hydrolyze cellulose. Unlike cellulose, whose microfibrillar structure and structural role in the cell wall has been clearly established, the function of these polymers as structural components of the wall is still a subject of controversy there is some evidence that they are energy-reserve materials.110-201 202... [Pg.293]

Density matrices and density functionals have important roles in both the interpretation and the calculation of atomic and molecular structures and properties. The fundamental importance of electronic correlation in many-body systems makes this topic a central area ofresearch in quantum chemistry and molecular physics. Relativistic effects are being increasingly recognized as an essential ingredient ofstudies on many-body systems, not only from a formal viewpoint but also for practical applications to molecules and materials involving heavy atoms. Valence theory deserves special attention since it... [Pg.323]

Crucially, structure of CNTs and polymers plays a key role on mechanical properties and load-transfer of nanocomposites. Efficient load-transfer is only possible when adequate interfacial bonding strength is available. Interfacial failure may compromise the reinforcement effect and then the full potential of CNTs may not be realized (11). Therefore, it is of great importance to understand the effect of molecular structure, interfacial structure and morphology characteristics on the tensile properties of nanocomposite materials. [Pg.392]

Water is one of the most familiar material in our life and is indispensable to all living things. In contrast to its apparently simple molecular structure, water shows many anomalous properties from both macroscopic and microscopic points of view. However, the basic physical property of water, for example the dynamical structure of water, has not yet been fully clioified. To un rstand the dynamical aspect of water structure and its significant role in life, it is essential to clarify not only the dynamics of water molecules themselves but also the dynamics of water in the aqueous solutions. [Pg.187]


See other pages where Molecular structure, role materials is mentioned: [Pg.85]    [Pg.1]    [Pg.95]    [Pg.448]    [Pg.100]    [Pg.293]    [Pg.622]    [Pg.138]    [Pg.287]    [Pg.410]    [Pg.18]    [Pg.452]    [Pg.1054]    [Pg.199]    [Pg.18]    [Pg.532]    [Pg.303]    [Pg.55]    [Pg.70]    [Pg.214]    [Pg.70]    [Pg.52]    [Pg.211]    [Pg.858]    [Pg.20]    [Pg.108]    [Pg.67]    [Pg.45]    [Pg.153]    [Pg.189]    [Pg.68]    [Pg.572]    [Pg.133]    [Pg.108]    [Pg.263]    [Pg.572]    [Pg.26]    [Pg.382]    [Pg.16]    [Pg.380]   
See also in sourсe #XX -- [ Pg.482 ]




SEARCH



Material structure

Molecular materials

Molecular structure, role

Structural roles

© 2024 chempedia.info