Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Molecular self-consistent field methods

In the bibliography, we have tried to concentrate the interest on contributions going beyond the Hartree-Fock approximation, and papers on the self-consistent field method itself have therefore not been included, unless they have also been of value from a more general point of view. However, in our treatment of the correlation effects, the Hartree-Fock scheme represents the natural basic level for study of the further improvements, and it is therefore valuable to make references to this approximation easily available. For atoms, there has been an excellent survey given by Hartree, and, for solid-state, we would like to refer to some recent reviews. For molecules, there does not seem to exist something similar so, in a special list, we have tried to report at least the most important papers on molecular applications of the Hartree-Fock scheme, t... [Pg.324]

Berthier, G., Self-Consistent Field Methods for Open-Shell Molecules, in Molecular Orbitals in Chemistry, Physics, and Biology, P. O. Lbwdin and B. Pullman, Eds., Academic Press, New York, 1964, pp. 57-82. [Pg.376]

A method of molecular-orbital calculations, also referred to as the self-consistent field method (SCF), to characterize the bonding in unsaturated and aromatic molecules while neglecting electron-electron repulsion. The method has been extended to all valence electrons. [Pg.333]

Hybrid quantum mechanics/molecular dynamics (method) Self-consistent field (method)... [Pg.39]

Various theoretical methods and approaches have been used to model properties and reactivities of metalloporphyrins. They range from the early use of qualitative molecular orbital diagrams (24,25), linear combination of atomic orbitals to yield molecular orbitals (LCAO-MO) calculations (26-30), molecular mechanics (31,32) and semi-empirical methods (33-35), and self-consistent field method (SCF) calculations (36-43) to the methods commonly used nowadays (molecular dynamic simulations (31,44,45), density functional theory (DFT) (35,46-49), Moller-Plesset perturbation theory ( ) (50-53), configuration interaction (Cl) (35,42,54-56), coupled cluster (CC) (57,58), and CASSCF/CASPT2 (59-63)). [Pg.265]

Thdry, V., Rinaldi, D., Rivail, J.-L., Maigret, B., and Ferenczy, G. G. 1994. Quantum Mechanical Computations on Very Large Molecular Systems The Local Self-consistent Field Method , J. Comput. Chem., 15, 269. [Pg.485]

V. Thery, D. Rinaldi, J. L. Rivail, B. Maigret and G. G. Ferenczy, Quantum-mechanical computations on very large molecular-systems - the local self-consistent-field method, J. Comput. Chem., 15 (1994) 269-282. [Pg.535]

Such a Slater determinant, as it is often called, would, in fact, be the correct wave function for a system of noninteracting electrons. Electrons, however, do interact in real molecular systems. In order to obtain a more satisfactory representation, the individual orbitals self-consistent field method, whose main features are as follows, (a) One writes the exact total Hamiltonian for the system with explicit inclusion of electron interactions... [Pg.88]

The Hiickel molecular orbital (HMO) model of pi electrons goes back to the early days of quantum mechanics [7], and is a standard tool of the organic chemist for predicting orbital symmetries and degeneracies, chemical reactivity, and rough energetics. It represents the ultimate uncorrelated picture of electrons in that electron-electron repulsion is not explicitly included at all, not even in an average way as in the Hartree Fock self consistent field method. As a result, each electron moves independently in a fully delocalized molecular orbital, subject only to the Pauli Exclusion Principle limitation to one electron of each spin in each molecular orbital. [Pg.537]

Many of the principles and techniques for calculations on atoms, described in section 6.2 of this chapter, can be applied to molecules. In atoms the electronic wave function was written as a determinant of one-electron atomic orbitals which contain the electrons these atomic orbitals could be represented by a range of different analytical expressions. We showed how the Hartree-Fock self-consistent-field methods could be applied to calculate the single determinantal best energy, and how configuration interaction calculations of the mixing of different determinantal wave functions could be performed to calculate the correlation energy. We will now see that these technques can be applied to the calculation of molecular wave functions, the atomic orbitals of section 6.2 being replaced by one-electron molecular orbitals, constructed as linear combinations of atomic orbitals (l.c.a.o. method). [Pg.206]

The focus then shifts to the delocalized side of Fig. 1.1, first discussing Hartree-Fock band-structure studies, that is, calculations in which the full translational symmetry of a solid is exploited rather than the point-group symmetry of a molecule. A good general reference for such studies is Ashcroft and Mermin (1976). Density-functional theory is then discussed, based on a review by von Barth (1986), and including both the multiple-scattering self-consistent-field method (MS-SCF-ATa) and more accurate basis-function-density-functional approaches. We then describe the success of these methods in calculations on molecules and molecular clusters. Advances in density-functional band theory are then considered, with a presentation based on Srivastava and Weaire (1987). A discussion of the purely theoretical modified electron-gas ionic models is... [Pg.94]

R.B. Gerber and R. Alimi, Quantum molecular dynamics by a perturbation-corrected time-dependent self-consistent-field method, Chem. Phys. Lett., 184 (1991) 69. [Pg.154]

A conceptually straightforward improvement on the CI approximation is to reoptimize the molecular orbitals for a truncated CI expansion. This approach is called multi-configuration self-consistent field method (MCSCF) and its most prominent variant is the complete active space SCF method (CASSCF) [64]. In the first generation of MCSCF methods [65, 66], the CI coefficients C/ in Eq. [Pg.427]

It is obvious by symmetry that the coefficients are related ca = cb, a = /b and Ca = =teB, but what about the ratios of ca to a to epP. I ll just mention for now that there is a systematic procedure called the Hartree-Fock self consistent field method for solving this problem. In the special case of the hydrogen molecular ion, which only has a single electron, we can calculate the variational integral and find the LCAO expansion coefficients by requiring that the variational integral is a minimum. Dickinson (1933) first did this calculation using Is and 2porbital exponents to be is = 1.246 and 2pa = 2.965 (See Table 3.2.)... [Pg.226]

Another fairly new method, using the electrostatic molecular potential, will not be discussed here since it is the subject of another contribution to this volume 50>. I will now consider methods that have had the widest application in the theoretical study of chemical reactivity, in order of increasing complexity a) molecular mechanics b) extended Htickel method c), d) empirical self-consistent field methods such as CNDO and MINDO e) the simplest ab initio approach f) the different S.C.F. methods, possibly including configuration interaction g) valence bond methods, and h) the dynamical approach, including the calculation of trajectories 61>. [Pg.25]

Looking at the history of correlation from the fifties to the seventies, one may be led to ask whether correlation has been a scientific fashion or a real problem. Twenty years ago, almost everybody seemed to accept the idea that the simple molecular orbital method (MO) must be completed by configuration interaction (Cl), in order to obtain reliable prediction for the physical properties of atoms and molecules. Ten years ago, electron correlation was considered as the central problem of Quantum Chemistry (7). Nowadays, about 90% of the quantum-mechanical calculations on molecules are performed by the self-consistent-field method (SCF) using more or less extended sets of basis functions, without any consideration of the possible effects of correlation. [Pg.2]

Maroulis117 has applied the finite field method to a study of HC1. In a systematic analysis with large basis sets, MBPT and CC techniques, the dipole, quadrupole, octupole and hexadecapole moments have been calculated at the experimental internuclear distance. The polarizability and several orders of hyperpolarizability have been calculated and the mean a and -values for the 18-electron systems HC1, HOOH, HOF, A, F2, H2S are compared. Fernandez et a/.118 have calculated the frequency dependent a, / and tensors for HC1 and HBr using the Multiple Configuration Self Consistent Field method (MCSCF), including the effect of molecular vibration. The results show good agreement with available experimental and theoretical data. [Pg.16]

The Englishman, Hartree (1,60) the Russian, Fock (2,3) and the American, Slater (5-7), in the early development of modern quantum mechanics, pioneered the calculation of atomic electronic structure. Hartree based his method on the variation principle and this led naturally to the development of the self-consistent field method, which is at the heart of the design of modem molecular orbital programs. [Pg.159]

The formal analysis of the mathematics required incorporating the linear combination of atomic orbitals molecular orbital approximation into the self-consistent field method was a major step in the development of modem Hartree-Fock-Slater theory. Independently, Hall (57) and Roothaan (58) worked out the appropriate equations in 1951. Then, Clement (8,9,63) applied the procedure to calculate the electronic structures of many of the atoms in the Periodic Table using linear combinations of Slater orbitals. Nowadays linear combinations of Gaussian functions are the standard approximations in modem LCAO-MO theory, but the Clement atomic calculations for helium are recognized to be very instructive examples to illustrate the fundamentals of this theory (67-69). [Pg.167]


See other pages where Molecular self-consistent field methods is mentioned: [Pg.133]    [Pg.171]    [Pg.81]    [Pg.147]    [Pg.43]    [Pg.86]    [Pg.81]    [Pg.647]    [Pg.2]    [Pg.84]    [Pg.3812]    [Pg.242]    [Pg.101]    [Pg.56]    [Pg.1201]    [Pg.8]    [Pg.154]    [Pg.3811]    [Pg.113]   


SEARCH



Field method

Molecular potential self-consistent-field method

Self-Consistent Field

Self-consistent field molecular

Self-consistent method

Self-consisting fields

© 2024 chempedia.info