Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Molecular organization liquids

K whereas fhe values of for most molecular organic liquids are... [Pg.12]

This effect assumes importance only at very small radii, but it has some applications in the treatment of nucleation theory where the excess surface energy of small clusters is involved (see Section IX-2). An intrinsic difficulty with equations such as 111-20 is that the treatment, if not modelistic and hence partly empirical, assumes a continuous medium, yet the effect does not become important until curvature comparable to molecular dimensions is reached. Fisher and Israelachvili [24] measured the force due to the Laplace pressure for a pendular ring of liquid between crossed mica cylinders and concluded that for several organic liquids the effective surface tension remained unchanged... [Pg.54]

Manne S and Gaub FI E 1995 Molecular organization of surfactants at solid-liquid interfaces Science 270 1480-3... [Pg.2607]

Because biomolecules normally exist in liquid water, this article will be largely concerned with their ordered structures in aqueous media and therefore with hydration effects. In order to understand better the influence of solute-solvent interactions on molecular order, also solvation in organic liquids will be considered to some extent. [Pg.2]

The liquid-liquid extraction process is based on the specific distribution of dissolved components between two immiscible fluids, for instance, between aqueous and organic liquids. The process refers to a mass exchange processes in which the mass transport of component (j) from phase (1) to phase (2) by means of convection or molecular diffusion acts to achieve the chemical potential (p) equilibrium (134) ... [Pg.267]

Muller, K., Kothe, G., and Wassmer, K.-H. Dynamic Magnetic Resonance of Liquid crystal Polymers Molecular Organization and Macroscopic Properties. Vol. 95, pp. 1 — 56. [Pg.157]

Thus one-fifth of the distillate is nitrobenzene. Since the com- j plex organic liquids one wishes to purify are usually of high molecular weight, the method of distillation in steam is very valuable. 1... [Pg.410]

We have seen that molecular substances tend to have low melting points, while network, ionic, and metallic substances tend to have high melting points. Therefore, with a few exceptions, such as mercury, a substance that is liquid at room temperature is likely to be a molecular substance. Liquid solvents are heavily used in industry to extract substances from natural products and to promote the synthesis of desired compounds. Because many of these solvents have high vapor pressures and so give tiff hazardous fumes, liquids that have low vapor pressures but dissolve organic compounds have been sought. [Pg.327]

Optimization requires that a-rtjl have some reasonably high value so that the wall temperature has a significant influence on reactor performance. There is no requirement that 3>AtlR be large. Thus, the method can be used for polymer systems that have thermal diffusivities typical of organic liquids but low molecular diffusivities. The calculations needed to solve the optimization are much longer than those needed to solve the ODEs of Chapter 6, but they are still feasible on small computers. [Pg.297]

Liquid crystals (LCs) are organic liquids with long-range ordered structures. They have anisotropic optical and physical behaviors and are similar to crystal in electric field. They can be characterized by the long-range order of their molecular orientation. According to the shape and molecular direction, LCs can be sorted as four types nematic LC, smectic LC, cholesteric LC, and discotic LC, and their ideal models are shown in Fig. 23 [52,55]. [Pg.45]

FIG. 3 An isotherm is depicted for a Langmuir monolayer of an amphiphUe showing the ft-A variation for the phase sequence gas (G) —> G + liquid-expanded (LE) —> LE —> LE + tilted condensed phase (L2) —> L2 —> vertical condensed phase (LS) —> S (solid). Schematic depictions of the molecular organization in the phases are shown above the isotherm. [Pg.62]

At the opposite extreme, molecular solids contain individual molecules bound together by various combinations of dispersion forces, dipole forces, and hydrogen bonds. Conforming to like dissolves like, molecular solids dissolve readily in solvents with similar types of intermolecular forces. Nonpolar I2, for instance, is soluble in nonpolar liquids such as carbon tetrachloride (CCI4). Many organic compounds are molecular solids that dissolve in organic liquids such as cyclohexane and acetone. [Pg.838]

For organic liquids, the group contribution method proposed by Chueh and Swanson (1973a,b) will give accurate predictions. The contributions to be assigned to each molecular group are given in Table 8.3 and the method illustrated in Examples 8.7 and 8.8. [Pg.323]

NR is not oil resistant and is swollen by aromatic, aliphatic and halogenated hydrocarbons. It is resistant to many inorganic chemicals, but not to oxidising acids and had limited resistance to mineral acids. It is unsuitable for use with organic liquids in general, the major exception being alcohols of low molecular weight. [Pg.86]

The properties of organic liquids relevant to their use as solvating agents have also been reviewed [76]. The ability of liquids to solvate a solute species depends mainly on their polarity and polarizability properties, ability to hydrogen bond, and cohesive electron density. These molecular properties are best measured by the Kamlet-Taft solvatochromic parameters, and the square of Hildebrand s solubility parameter. [Pg.29]

Two heat-sensitive organic liquids of an average molecular mass of 155 kg/kmol are to be separated by vacuum distillation in a 100 mm diameter column packed with 6 mm stoneware Raschig rings. The number of theoretical plates required is 16 and it has been found that the HETP is 150 mm. If the product rate is 5 g/s at a reflux ratio of 8, calculate the pressure in the condenser so that the temperature in the still does not exceed 395 K (equivalent to a pressure of 8 kN/m2). It may be assumed that a = 800 m2/m3, /x = 0.02 mN s/m2, e = 0.72 and that the temperature changes and the correction for liquid flow may be neglected. [Pg.47]

Given the interest in extended carbon systems in recent years, it seemed useful to study the solubility of C60 (fullerene) in various organic liquids.54 55 It was now for the solvents that the molecular surface properties were computed. The resulting Eq. (14) shows that, for this large nonpolar solute, solubility is enhanced by solvent molecule surface area and by the latter having somewhat... [Pg.32]

In this experiment you will be given two unknown organic liquids to attempt to identify by infrared spectrometry. For one of the unknowns you will be given its molecular formula. The other must be identified by matching its infrared spectrum to a spectrum in a reference catalog of spectra (sometimes called a spectral library). [Pg.235]

The basic modem data describing the atomic stmcture of matter have been obtained by the using of diffraction methods - X-ray, neutron and electron diffraction. All three radiations are used not only for the stmcture analysis of various natural and synthetic crystals - inorganic, metallic, organic, biological crystals but also for the analysis of other condensed states of matter - quasicrystals, incommensurate phases, and partly disordered system, namely, for high-molecular polymers, liquid crystals, amorphous substances and liquids, and isolated molecules in vapours or gases. This tremendous... [Pg.85]


See other pages where Molecular organization liquids is mentioned: [Pg.28]    [Pg.29]    [Pg.80]    [Pg.256]    [Pg.153]    [Pg.27]    [Pg.44]    [Pg.975]    [Pg.27]    [Pg.319]    [Pg.255]    [Pg.43]    [Pg.70]    [Pg.94]    [Pg.87]    [Pg.112]    [Pg.401]    [Pg.110]    [Pg.27]    [Pg.464]    [Pg.34]    [Pg.79]    [Pg.204]    [Pg.9]    [Pg.13]    [Pg.1083]    [Pg.1154]    [Pg.171]    [Pg.383]    [Pg.95]   
See also in sourсe #XX -- [ Pg.284 , Pg.305 ]




SEARCH



Molecular liquids

Organic liquids

Organization molecular

© 2024 chempedia.info