Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Molecular Dynamics MD Simulations

The simulation of molecular (or atomic) dynamics on a computer was invented by the physicist George Vineyard, working at Brookhaven National Laboratory in New York State. This laboratory, whose biography has recently been published (Crease 1999), was set up soon after World War II by a group of American universities. [Pg.469]

One other remark of Vineyard s in 1972, made with evident feeling, is worth repeating here Worthwhile computer experiments require time and care. The easy understandability of the results tends to conceal the painstaking hours that went into conceiving and formulating the problem, selecting the parameters of a model. [Pg.470]

Two features of such dynamic simulations need to be emphasised. One is the limitation, set simply by the finite capacity of even the fastest and largest present-day computers, on the number of atoms (or molecules) and the number of time-steps which can be treated. According to Raabe (1998), the time steps used are 10 - [Pg.471]


Equation (C3.5.3) shows tire VER lifetime can be detennined if tire quantum mechanical force-correlation Emotion is computed. However, it is at present impossible to compute tliis Emotion accurately for complex systems. It is straightforward to compute tire classical force-correlation Emotion using classical molecular dynamics (MD) simulations. Witli tire classical force-correlation function, a quantum correction factor Q is needed 5,... [Pg.3036]

Knowledge of the underlying nuclear dynamics is essential for the classification and description of photochemical processes. For the study of complicated systems, molecular dynamics (MD) simulations are an essential tool, providing information on the channels open for decay or relaxation, the relative populations of these channels, and the timescales of system evolution. Simulations are particularly important in cases where the Bom-Oppenheimer (BO) approximation breaks down, and a system is able to evolve non-adiabatically, that is, in more than one electronic state. [Pg.251]

Abstract. Molecular dynamics (MD) simulations of proteins provide descriptions of atomic motions, which allow to relate observable properties of proteins to microscopic processes. Unfortunately, such MD simulations require an enormous amount of computer time and, therefore, are limited to time scales of nanoseconds. We describe first a fast multiple time step structure adapted multipole method (FA-MUSAMM) to speed up the evaluation of the computationally most demanding Coulomb interactions in solvated protein models, secondly an application of this method aiming at a microscopic understanding of single molecule atomic force microscopy experiments, and, thirdly, a new method to predict slow conformational motions at microsecond time scales. [Pg.78]

Among the main theoretical methods of investigation of the dynamic properties of macromolecules are molecular dynamics (MD) simulations and harmonic analysis. MD simulation is a technique in which the classical equation of motion for all atoms of a molecule is integrated over a finite period of time. Harmonic analysis is a direct way of analyzing vibrational motions. Harmonicity of the potential function is a basic assumption in the normal mode approximation used in harmonic analysis. This is known to be inadequate in the case of biological macromolecules, such as proteins, because anharmonic effects, which MD has shown to be important in protein motion, are neglected [1, 2, 3]. [Pg.332]

Our work is targeted to biomolecular simulation applications, where the objective is to illuminate the structure and function of biological molecules (proteins, enzymes, etc) ranging in size from dozens of atoms to tens of thousands of atoms today, with the desire to increase this limit to millions of atoms in the near future. Such molecular dynamics (MD) simulations simply apply Newton s law to each atom in the system, with the force on each atom being determined by evaluating the gradient of the potential field at each atom s position. The potential includes contributions from bonding forces. [Pg.459]

To examine the soUd as it approaches equUibrium (atom energies of 0.025 eV) requires molecular dynamic simulations. Molecular dynamic (MD) simulations foUow the spatial and temporal evolution of atoms in a cascade as the atoms regain thermal equiUbrium in about 10 ps. By use of MD, one can foUow the physical and chemical effects that induence the final cascade state. Molecular dynamics have been used to study a variety of cascade phenomena. These include defect evolution, recombination dynamics, Hquid-like core effects, and final defect states. MD programs have also been used to model sputtering processes. [Pg.397]

VMD is designed for the visualization and analysis of biological systems such as proteins, nucleic acids, and lipid bilayer assemblies. It may be used to view more general molecules, as VMD can read several different structural file formats and display the contained structure. VMD provides a wide variety of methods for rendering and coloring a molecule. VMD can be used to animate and analyze the trajectory of a molecular dynamics (MD) simulation. [Pg.499]

At the same time, many lattice dynamics models have been constructed from force-constant models or ab-initio methods. Recently, the technique of molecular dynamics (MD) simulation has been widely used" " to study vibrations, surface melting, roughening and disordering. In particular, it has been demonstrated " " " that the presence of adatoms modifies drastically the vibrational properties of surfaces. Lately, the dynamical properties of Cu adatoms on Cu(lOO) " and Cu(lll) faces have been calculated using MD simulations and a many-body potential based on the tight-binding (TB) second-moment aproximation (SMA). " ... [Pg.151]

A successful tool to describe and interpret experimental findings of liquids is to perform ab initio molecular dynamics (MD) simulations for the particular systems. We performed such simulations for 5 different compositions of NaSn - ranging from 20% to 80% of sodium - applying the Car-Parrinello technique [5]. [Pg.277]

More detailed aspects of protein function can be obtained also by force-field based approaches. Whereas protein function requires protein dynamics, no experimental technique can observe it directly on an atomic scale, and motions have to be simulated by molecular dynamics (MD) simulations. Also free energy differences (e.g. between binding energies of different protein ligands) can be characterised by MD simulations. Molecular mechanics or molecular dynamics based approaches are also necessary for homology modelling and for structure refinement in X-ray crystallography and NMR structure determination. [Pg.263]

Quantum chemical calculations, molecular dynamics (MD) simulations, and other model approaches have been used to describe the state of water on the surface of metals. It is not within the scope of this chapter to review the existing literature only the general, qualitative conclusions will be analyzed. [Pg.172]

Equilibrium Systems. Magda et al (12.) have carried out an equilibrium molecular dynamics (MD) simulation on a 6-12 Lennard-Jones fluid In a silt pore described by Equation 41 with 6 = 1 with fluid particle Interactions given by Equation 42. They used the Monte Carlo results of Snook and van Me gen to set the mean pore density so that the chemical potential was the same In all the simulations. The parameters and conditions set In this work were = 27T , = a, r = 3.5a, kT/e = 1.2, and... [Pg.270]

Stimulated by these observations, Odelius et al. [73] performed molecular dynamic (MD) simulations of water adsorption at the surface of muscovite mica. They found that at monolayer coverage, water forms a fully connected two-dimensional hydrogen-bonded network in epitaxy with the mica lattice, which is stable at room temperature. A model of the calculated structure is shown in Figure 26. The icelike monolayer (actually a warped molecular bilayer) corresponds to what we have called phase-I. The model is in line with the observed hexagonal shape of the boundaries between phase-I and phase-II. Another result of the MD simulations is that no free OH bonds stick out of the surface and that on average the dipole moment of the water molecules points downward toward the surface, giving a ferroelectric character to the water bilayer. [Pg.274]

DD can be monitored by a variety of experimental techniques. They involve thermodynamic, dilatometric, and spectroscopic procedures. Molecular dynamics (MD) simulations also become applicable to self-assembled systems to some extent see the review in Ref. 2. Spectroscopic methods provide us with molecular parameters, as compared with thermodynamic ones on the macroscopic level. The fluorescence probing method is very sensitive (pM to nM M = moldm ) and informs us of the molecular environment around the probes. However, fluorescent molecules are a kind of drug and the membrane... [Pg.771]

All the macroscopic properties of polymers depend on a number of different factors prominent among them are the chemical structures as well as the arrangement of the macromolecules in a dense packing [1-6]. The relationships between the microscopic details and the macroscopic properties are the topics of interest here. In principle, computer simulation is a universal tool for deriving the macroscopic properties of materials from the microscopic input [7-14]. Starting from the chemical structure, quantum mechanical methods and spectroscopic information yield effective potentials that are used in Monte Carlo (MC) and molecular dynamics (MD) simulations in order to study the structure and dynamics of these materials on the relevant length scales and time scales, and to characterize the resulting thermal and mechanical proper-... [Pg.46]

Molecular simulation methods can be a complement to surface complexation modeling on metal-bacteria adsorption reactions, which provides a more detailed and atomistic information of how metal cations interact with specific functional groups within bacterial cell wall. Johnson et al., (2006) applied molecular dynamics (MD) simulations to analyze equilibrium structures, coordination bond distances of metal-ligand complexes. [Pg.86]


See other pages where Molecular Dynamics MD Simulations is mentioned: [Pg.467]    [Pg.3]    [Pg.3]    [Pg.78]    [Pg.332]    [Pg.366]    [Pg.359]    [Pg.166]    [Pg.2]    [Pg.237]    [Pg.382]    [Pg.466]    [Pg.463]    [Pg.469]    [Pg.757]    [Pg.218]    [Pg.45]    [Pg.634]    [Pg.657]    [Pg.26]    [Pg.103]    [Pg.138]    [Pg.78]    [Pg.774]    [Pg.85]    [Pg.647]    [Pg.57]    [Pg.225]    [Pg.168]    [Pg.91]    [Pg.44]    [Pg.299]   


SEARCH



Dynamic simulation

Dynamical simulations

Dynamics (MD)

MD simulation

MD, molecular dynamics

Molecular Dynamics Simulation

Molecular simulations

© 2024 chempedia.info