Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Modified electrodes charge transport

Mediated electrocatalysis at a polymer-modified electrode charge and mass transport processes. [Pg.248]

A thin layer deposited between the electrode and the charge transport material can be used to modify the injection process. Some of these arc (relatively poor) conductors and should be viewed as electrode materials in their own right, for example the polymers polyaniline (PAni) [81-83] and polyethylenedioxythiophene (PEDT or PEDOT) [83, 841 heavily doped with anions to be intrinsically conducting. They have work functions of approximately 5.0 cV [75] and therefore are used as anode materials, typically on top of 1TO, which is present to provide lateral conductivity. Thin layers of transition metal oxide on ITO have also been shown [74J to have better injection properties than ITO itself. Again these materials (oxides of ruthenium, molybdenum or vanadium) have high work functions, but because of their low conductivity cannot be used alone as the electrode. [Pg.537]

The electrochemistry of a polymer-modified electrode is determined by a combination of thermodynamics and the kinetics of charge-transfer and transport processes. Thermodynamic aspects are highlighted by cyclic voltammetry, while kinetic aspects are best studied by other methods. These methods will be introduced here, with the emphasis on how they are used to measure the rates of electron and ion transport in conducting polymer films. Charge transport in electroactive films in general has recently been reviewed elsewhere.9,11... [Pg.567]

A discussion of the charge transfer reaction on the polymer-modified electrode should consider not only the interaction of the mediator with the electrode and a solution species (as with chemically modified electrodes), but also the transport processes across the film. Let us assume that a solution species S reacts with the mediator Red/Ox couple as depicted in Fig. 5.32. Besides the simple charge transfer reaction with the mediator at the interface film/solution, we have also to include diffusion of species S in the polymer film (the diffusion coefficient DSp, which is usually much lower than in solution), and also charge propagation via immobilized redox centres in the film. This can formally be described by a diffusion coefficient Dp which is dependent on the concentration of the redox sites and their mutual distance (cf. Eq. (2.6.33). [Pg.332]

Thin-film ideal or Nemstian behavior is the starting point to explain the voltammetric behavior of polyelectrolyte-modified electrodes. This condition is fulfilled when (i) the timescale of the experiment is slower than the characteristic timescale for charge transport (fjD pp, with Ithe film thickness) in the film, that is all redox within the film are in electrochemical equibbrium at any time, (ii) the activity of redox sites is equal to their concentration and (iii) all couples have the same redox potential. For these conditions, anodic and cathodic current-potential waves are mirror images (zero peak splitting) and current is proportional to the scan rate [121]. Under this regime, there exists an analytical expression for the current-potential curve ... [Pg.72]

When the characteristic time for charge diffusion is lower than the experiment timescale, not all the redox sites in the film can be oxidized/reduced. From experiments performed under these conditions, an apparent diffusion coefficient for charge propagation, 13app> can be obtained. In early work choroamperometry and chronocoulometry were used to measure D pp for both electrostatically [131,225] and covalently bound ]132,133] redox couples. Laviron showed that similar information can be obtained from cyclic voltammetry experiments by recording the peak potential and current as a function of the potential scan rate [134, 135]. Electrochemical impedance spectroscopy (EIS) has also been employed to probe charge transport in polymer and polyelectrolyte-modified electrodes [71, 73,131,136-138]. The methods... [Pg.81]

One other design developed by Wang s group uses the same base sensor (GCE), which is coated with a layer of poly(4-vinylpyridine) (PVP). This cationic polyelectrolyte was one of the first polymers used to modify electrode surfaces [27]. Much research effort in this context has been directed to the characterization of the transport and electrostatic binding of multi-charged anions at PVP-coated electrodes. The ability of this polymer... [Pg.208]

Having debated the mechanism of charge transport within the polymer film, it is now useful to consider a few examples of chemical applications of polymer modified electrodes. Electrodes coated with [Ru(bipy)2Cl(PVP)]Cl or [Ru(bipy)2(py)(PVP)]Cl2 show strong catalytic effects for the reduction of cerium(IV) and the oxidation of iron(II).52... [Pg.19]

Perhaps the original hope for these polymers was that they would act simultaneously as immobilisation matrix and mediator, facilitating electron transfer between the enzyme and electrode and eliminating the need for either O2 or an additional redox mediator. This did not appear to be the case for polypyrrole, and in fact while a copolymer of pyrrole and a ferrocene modified pyrrole did achieve the mediation (43), the response suggested that far from enhancing the charge transport, the polypyrrole acted as an inert diffusion barrier. Since these early reports, other mediator doped polypyrroles have been reported (44t45) and curiosity about the actual role of polypyrrole or any other electrochemically deposited polymer, has lead to many studies more concerned with the kinetics of the enzyme linked reactions and the film transport properties, than with the achievement of a real biosensor. [Pg.17]

Electrode surface modified by the addition of a polymer containing mediating groups The polymers used are non-conducting, hence, devices suffer from poor charge transport [56]... [Pg.47]

Refs. [i] Chance RR, Boundreaux DS, Bredas J-L, Silbey R (1986) Solitons, polarons and bipolarons in conjugated polymers. In Skotheim TA (Ed) Handbook of conducting polymers, vol. 2, Marcel Dekker, p 825 [ii] Inzelt G (1994) Mechanism of charge transport in polymer-modified electrodes. In Bard AJ (Ed) Electroanalytical chemistry, vol. 18, Marcel Dekker [iii] Lyons MEG (1994) Charge percolation in electroactive polymers. In Lyons MEG (ed) Electroactive polymer electrochemistry, Parti, Plenum, New York, p 1... [Pg.50]

Cooper pairs which are formed by two electrons.) Although the -> conductivity of the electronically conducting phase is a critical factor in all electrochemical experiments and applications, electrochemists are mostly interested in the ionic charge transport in electrolyte solutions or surface layers [i-iii]. Mixed, electronic and ionic conductivity occurs, e.g., in polymer-modified electrodes [ix], and in many -> solid electrolytes (see also... [Pg.88]

Solid-state electrochemistry — is traditionally seen as that branch of electrochemistry which concerns (a) the -> charge transport processes in -> solid electrolytes, and (b) the electrode processes in - insertion electrodes (see also -> insertion electrochemistry). More recently, also any other electrochemical reactions of solid compounds and materials are considered as part of solid state electrochemistry. Solid-state electrochemical systems are of great importance in many fields of science and technology including -> batteries, - fuel cells, - electrocatalysis, -> photoelectrochemistry, - sensors, and - corrosion. There are many different experimental approaches and types of applicable compounds. In general, solid-state electrochemical studies can be performed on thin solid films (- surface-modified electrodes), microparticles (-> voltammetry of immobilized microparticles), and even with millimeter-size bulk materials immobilized on electrode surfaces or investigated with use of ultramicroelectrodes. The actual measurements can be performed with liquid or solid electrolytes. [Pg.620]

Nieto, R, Jr., and Tucceri, R.L 1996. The effect of pH on the charge transport at redox polymer-modified electrodes An a.c. impedance smdy apphed to poly(o-aminophenol) film electrodes. Journal of Electroanalytical Chemistry 416, 1-24. [Pg.294]


See other pages where Modified electrodes charge transport is mentioned: [Pg.185]    [Pg.649]    [Pg.649]    [Pg.420]    [Pg.104]    [Pg.124]    [Pg.300]    [Pg.111]    [Pg.197]    [Pg.39]    [Pg.220]    [Pg.358]    [Pg.487]    [Pg.100]    [Pg.248]    [Pg.499]    [Pg.126]    [Pg.458]    [Pg.97]    [Pg.215]    [Pg.215]    [Pg.720]    [Pg.358]    [Pg.137]    [Pg.246]    [Pg.258]   
See also in sourсe #XX -- [ Pg.617 , Pg.620 ]




SEARCH



Charge electrode

Charge transport

Charge transportability

Electrode modifier

Modified electrodes

© 2024 chempedia.info