Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Model Polanyi

As pressure increases, new islands form, and some of them flow together until the whole surface becomes covered with adsorbed liquid when the vapor pressure is reached. Using this model, Polanyi and Goldmann concluded that adsorption of vapors on charcoal was not unimolecular, although the data obeys the Langmuir equation. Goldmann and Polanyi (1928), in ref. 23. See Brunauer, The Adsorption of Gases and Vapours, 116-119. [Pg.256]

Alternative approaches treat the adsorbed layer as an ideal solution or in terms of a Polanyi potential model (see Refs. 12-14 and Section XVII-7) a related approach has been presented by Myers and Sircar [15]. Adsorption rates have been modeled as diffusion controlled [16,17]. [Pg.394]

Surface Area and Permeability or Porosity. Gas or solute adsorption is typicaUy used to evaluate surface area (74,75), and mercury porosimetry is used, ia coajuactioa with at least oae other particle-size analysis, eg, electron microscopy, to assess permeabUity (76). Experimental techniques and theoretical models have been developed to elucidate the nature and quantity of pores (74,77). These iaclude the kinetic approach to gas adsorptioa of Bmaauer, Emmett, and TeUer (78), known as the BET method and which is based on Langmuir s adsorption model (79), the potential theory of Polanyi (25,80) for gas adsorption, the experimental aspects of solute adsorption (25,81), and the principles of mercury porosimetry, based on the Young-Duprn expression (24,25). [Pg.395]

Generalized Correlations. Generalized correlations are often the only recourse when a property value cannot be determined from empirical correlations or by other means. Several powerful correlating techniques fall under this category, including the principle of corresponding states (3,17), reduced property models (1), and the Polanyi-type characteristic curve for microporous adsorbents (14). [Pg.232]

Arrhenius parameters were shown to be consistent with the Polanyi—Wigner model, eqn. (19), and E = 125 kJ mole 1. [Pg.148]

It had been assnmed in the past that the main reason for development of an activated transition state with enhanced energy is a stretching of chemical bonds. Thus, in the model of Horinti and Polanyi it was assnmed that stretching of H+-H2O bonds... [Pg.243]

The articles by J. R. Anderson, J. H. Sinfelt, and R. B. Moyes and P. B. Wells, on the other hand, deal with a classical field, namely hydrocarbons on metals. The pattern of modem wTork here still very much reflects the important role in the academic studies of deuterium exchange reactions and the mechanisms advanced by pioneers like Horiuti and Polanyi, the Farkas brothers, Rideal, Tw igg, H. S. Taylor, and Turkevich. Using this method, Anderson takes ultrathin metal films with their separated crystallites as idealized models for supported metal catalysts. Sinfelt is concerned with hydrogcnolysis on supported metals and relates the activity to the percentage d character of the metallic bond. Moyes and Wells deal with the modes of chemisorption of benzene, drawing on the results of physical techniques and the ideas of the organometallic chemists in their discussions. [Pg.362]

Since the discovery of the deuterium isotope in 1931 [44], chemists have long recognized that kinetic deuterium isotope effects could be employed as an indicator for reaction mechanism. However, the development of a mechanism is predicated upon analysis of the kinetic isotope effect within the context of a theoretical model. Thus, it was in 1946 that Bigeleisen advanced a theory for the relative reaction velocities of isotopic molecules that was based on the theory of absolute rate —that is, transition state theory as formulated by Eyring as well as Evans and Polanyi in 1935 [44,45]. The rate expression for reaction is given by... [Pg.70]

To begin we are reminded that the basic theory of kinetic isotope effects (see Chapter 4) is based on the transition state model of reaction kinetics developed in the 1930s by Polanyi, Eyring and others. In spite of its many successes, however, modern theoretical approaches have shown that simple TST is inadequate for the proper description of reaction kinetics and KIE s. In this chapter we describe a more sophisticated approach known as variational transition state theory (VTST). Before continuing it should be pointed out that it is customary in publications in this area to use an assortment of alphabetical symbols (e.g. TST and VTST) as a short hand tool of notation for various theoretical methodologies. [Pg.181]

Among them, Li-i-HP can be considered a benchmark model system [29, 30] because its low number of electrons makes possible to calculate accurate PES s. Its electronic spectrum has been meassured by Polanyi and coworkers [22], and has been recently very nicely reproduced using purely adiabatic PES s [31]. In the simulation of the spectrum[31], the transition lines were artificially dressed by lorentzians which widths were fitted to better reproduce the experimental envelop. The physical origin of such widths is the decay of the quasibound states of the excited electronic states through electronic predissociation (EP) towards the ground electronic state. This EP process is the result of the non-adiabatic cou-... [Pg.386]

In our simulations we use the following pragmatic approach. For a reaction we have a model of the lateral interactions that tells us how the energies of the initial and the final states (both minima) depend on the lateral interactions. We then use the Bronsted-Polanyi relation to relate the shifts in the initial and final state to a change in the activation energy ° ... [Pg.129]

Fukuzumi and Kochi, 1981a). On the basis of a Bell-Evans-Polanyi diagram, an -value closer to 0.5 would have been expected. However we do not feel that the -value of 1 necessarily constitutes evidence for the ion-pair-like character of the transition state. On the basis of the CM model the transition state is described by (74). This would imply only c. 50% ion-pair character in... [Pg.137]

Equation (82) predicts that for reactions with zero free energy change a = 0.5, while for exothermic reactions, a < 0.5 and for endothermic reactions, a > 0.5. Since according to both Marcus theory and the Bell— Evans-Polanyi model early transition states are related to exothermic reactions and late transition states to endothermic reactions, a may be interpreted as a relative measure of transition state geometry. However, in our view even this interpretation should be treated with a measure of healthy scepticism. Even if one accepts Marcus theory without reservation, the a... [Pg.150]

The predictions of the CM model are exactly the same. In line with a simple Bell-Evans-Polanyi diagram (e.g. Fig. 18), stabilization of the product configuration leads to an earlier transition state, while stabilization of an intermediate configuration leads it increasingly to mix into the transition-state wave-function. For example, stabilization of the carbocationic configuration [36] results in the transition state acquiring more of that character so that an E2 process becomes more El-like (Fig. 266). [Pg.165]

In the present chapter, we have attempted to illustrate how surface bonding and catalytic activity are closely related. One of the main conclusions is that adsorption energies of the main intermediates in a surface catalyzed reaction is often a very good descriptor of the catalytic activity. The underlying reason is that we find correlations, Brpnsted-Evans-Polanyi relations, between activation barriers and reaction energies for a number of surface reactions. When combined with simple kinetic models such correlations lead to volcano-shaped relationships between catalytic activity and adsorption energies. [Pg.316]


See other pages where Model Polanyi is mentioned: [Pg.507]    [Pg.507]    [Pg.870]    [Pg.915]    [Pg.273]    [Pg.1495]    [Pg.1504]    [Pg.1505]    [Pg.92]    [Pg.96]    [Pg.130]    [Pg.335]    [Pg.284]    [Pg.80]    [Pg.3]    [Pg.3]    [Pg.12]    [Pg.14]    [Pg.208]    [Pg.315]    [Pg.198]    [Pg.238]    [Pg.329]    [Pg.278]    [Pg.131]    [Pg.163]    [Pg.102]    [Pg.161]    [Pg.184]    [Pg.154]    [Pg.105]   
See also in sourсe #XX -- [ Pg.377 ]




SEARCH



Evans-Polanyi model

Model Polanyi potential

Polanyi

© 2024 chempedia.info