Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Mixed ionic electronic conductors MIECs

Solid mixed ionic-electronic conductors (MIECs) exhibit both ionic and electronic (electron-hole) conductivity. Naturally, in any material there are in principle nonzero electronic and ionic conductivities (a i, a,). It is customary to limit the use of the term MIEC to those materials in which a, and 0, 1 do not differ by more than two orders of magnitude. It is also customary to use the term MIEC if a, and Ogi are not too low (o, a i 10 S/cm). Obviously, there are no strict rules. There are processes where the minority carriers play an important role despite the fact that 0,70 1 exceeds those limits and a, aj,i< 10 S/cm. In MIECs, ion transport normally occurs via interstitial sites or by hopping into a vacant site or a more complex combination based on interstitial and vacant sites, and electronic (electron/hole) conductivity occurs via delocalized states in the conduction/valence band or via localized states by a thermally assisted hopping mechanism. With respect to their properties, MIECs have found wide applications in solid oxide fuel cells, batteries, smart windows, selective membranes, sensors, catalysis, and so on. [Pg.436]

D Mixed ionic electronic conductor (MIEC) o Triple-phase boundaries (TPB s)... [Pg.243]

Figure 15.1. Illusuation of the difference in location of the electrode reaction on two different SOFC electrode types. Upper In an electrode where the electrode material is exclusively an electronic conductor, the reaction zone is restrained to the vicinity of the triple phase boundary (TPB). Lower In a mixed ionic-electronic conductor (MIEC) the electrode reaction can take place on the entire electrode surface... Figure 15.1. Illusuation of the difference in location of the electrode reaction on two different SOFC electrode types. Upper In an electrode where the electrode material is exclusively an electronic conductor, the reaction zone is restrained to the vicinity of the triple phase boundary (TPB). Lower In a mixed ionic-electronic conductor (MIEC) the electrode reaction can take place on the entire electrode surface...
It is obvious that a highly permeable membrane material must exhibit large con-ductivies for both ionic and electronic charge carriers. Partial conductivities of various, so-called mixed ionic electronic conductors (MIEC), as calculated or directly obtained from Refs. 9-21, are presented in Figure 2. [Pg.181]

The use of mixed ionic-electronic conductors (MIECs) as ORR electrocatalysts is quite common in solid-state electrochemistry [125], because the reaction zone is extended over the entire electrode/gas interface, contrary to the case of metal electrodes where the reaction is, to a large extent, restricted to the tpb zone [23]. [Pg.62]

In this section, a brief overview is given of major membrane concepts and materials. Besides membranes made from a mixed ionic-electronic conductor (MIEC), other membranes incorporating an oxygen ion conductor are briefly discussed. Data from oxygen permeability measurements on selected membrane materials are presented. [Pg.436]

Ceramic electrochemical reactors are currently undergoing intense investigation, the aim being not only to generate electricity but also to produce chemicals. Typically, ceramic dense membranes are either pure ionic (solid electrolyte SE) conductors or mixed ionic-electronic conductors (MIECs). In this chapter we review the developments of cells that involve a dense solid electrolyte (oxide-ion or proton conductor), where the electrical transfer of matter requires an external circuitry. When a dense ceramic membrane exhibits a mixed ionic-electronic conduction, the driving force for mass transport is a differential partial pressure applied across the membrane (this point is not considered in this chapter, although relevant information is available in specific reviews). [Pg.397]

Key words membrane reactor, perovskite, proton conducting membrane, mixed ionic-electronic conductor (MIEC), partial oxidation of methane... [Pg.347]

Despite the apparent simplicity of this reaction, the process by which the oxygen reduction occurs followed by incorporation of the ionic species into the electrolyte is the subject of some debate and is dependent on the mode of operation of the cathode material. Two typical cathode types are currently utilized in SOFCs -electronic conductors and mixed ionic-electronic conductors (MIECs). The cathode reactions, while nominally the same in both types of materials, occur at different locations, and hence, the active region varies, leading to differences in the operating regime and ultimately performance. In the case of a single phase electronic conductor. [Pg.1008]

Continuous air separation by an oxygen-conducting membrane which constitutes the wall of a CPO reactor is another approach which has received much interest, also from industry. Two types of membrane materials have been studied zirkonia-based membranes, which are efficient oxygen ion conductors but require electrodes to transfer electrons to the reduction interface, and perovskites (of general formula ABO3, with dopants in the A and/or B site), which are mixed ionic/electronic conductors (MIEC). ... [Pg.208]

Key words membrane reactors, mixed ionic-electronic conductors (MIECs), perovskite, oxygen permeable membrane, proton conducting membrane. [Pg.271]


See other pages where Mixed ionic electronic conductors MIECs is mentioned: [Pg.328]    [Pg.1]    [Pg.7]    [Pg.362]    [Pg.328]    [Pg.167]    [Pg.256]    [Pg.248]    [Pg.7]    [Pg.167]    [Pg.277]    [Pg.175]    [Pg.109]    [Pg.255]    [Pg.106]   
See also in sourсe #XX -- [ Pg.255 ]




SEARCH



Conductor electronic/ionic

Conductor mixed

Electron conductor

Electron mixed

Electronic conductors

Ionic conductors

MIEC

MIEC (mixed ionic/electronic

Mixed Ionic

Mixed Ionic/electron

Mixed ionic-electronic conductor MIEC)

Mixed ionic-electronic conductor MIEC)

© 2024 chempedia.info